
FILE CO"

EXPERT SYSTEM
IN

SOFTWARE ENGINEERING
USING

STRUCTURED ANALYSIS AND
DESIGN TECHNIQUE(SADT)

THESIS
.. . . .Intaek Kim

Captain, ROKAF

D STATIEM A -l DTIC
Approved for public release; .-- I 99o

- DEPARTMENT OF THE AIR FORCE- Al

.AIR UNWVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY _

Wright-Patturson Air Force Base, Ohio

90 0620 07, ,

AFIT/GCS/ENG/90J-02

EXPERT SYSTEM
I N

SOFTWARE ENGINEERING
USING

STRUCTURED ANALYSIS AND
DESIGN TECHNIQUE(SADT)

THESIS

Intaek Kim
Captain, ROKAF

AFIT/GCS/ENG/90J-02

iilk

Arri

Approved for public release; distribution unlimited

AFIT/GCS/ENG/90J-02

EXPERT SYSTEM IN SOFTWARE ENGINEERING USING

STRUCTURED ANALYSIS AND DESIGN TECHNIQUE(SADT)

THESIS

4P
Presented to the Faculty of the School of Engineering 0"

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the Accession For

Requirements for the Degree of NTIS CRA&I

Master of Science (Computer Systcms) DTC TA3
I U:- d

t D::tI f: i n/

Intaek Kim, B.S. .,.vi:.: t-, Cedes

Captain, ROKAF

June, 1990

Approved for public release; distribution unlimited

Acknowledgments

This thesis effort consists of designing and implementing an Expert System

which checks the syntax of the Structured Analysis and Design Technique (SADT)

language from a drawing model generated during the requirements analysis phase of

the software life cycle.

The development of the Expert System is separated into two parts. The first

part is to translate a Structured Analysis diagram into a set of predicate data forms

for SADT syntax analysis. The second part is to check the syntax of a Structured

Analysis language through an inference engine and a rule-base knowledge.

1 wish to express my gratitude to Dr. Gary B. Lamont, my thesis advisor,

for his guidance and inspiration throughout this effort. Also, I wish to thank my

committee members, Dr. Thomas C. Hartrum and Dr. Frank M. Brown, for their

contribution to this thesis. I also would like to thank the R.O.K. and U.S. Govern-

ments for allowing me to have this experience.

In preparing this documentation, I thank the two gentlemen, Arthur L. Sumner

and Terry L. Kitchen, for encouraging me and for English reviews. I would like to

thank my father, my mother, and my wife, Jeunglim Jang, for their encouraging and

support me. Finally, I want to thank my daughter, Yangheun.

To my father and mother.

Intaek Kim

ii

Table of Contents

Page

Acknowledgments.........

Table of Contents.....

List of Figures vi

List of Tables Vi

Abst ract Vill

I. Introduction 1-1

Background 1-1

Statement of the Problem. 1-2

Assumptions. 1-2

Research Approach 1-2

Materials and Equipment. 1-:3

Overview of Thesis 1-4

IL. Literature Review 2-1

Introduction. 2-1

Requirements Analysis Phase 2-1

AFNT Structured Aiialysis Syntax. 2-4

Expert Systemn. 2-7

Summary. 2-9

Page

11!. System Requirements Analysis 3-1

Introduction 3-1

Considerations of the Previous Studies 3-1

IDEF0 Diagram Translator Requirements 3-2

IDEF0 Syntax Expert System Requirements 3-3

Validation Test Requirements 3-3

Requirements Analysis Diagrams 3-4

Summary 3-7

IV. High Level Design 4-1

Introduction 4-1

Previous Study Considerations 4-1

Screen Layout and Menu System 4-1

IDEFo Diagram Translator 4-2

IDEFo Syntax Expert System Components 4-7

Inference Engine 4-7

Knowledge Base 4-8

Data Base (Working Memory) 4-9

User Interface 4-9

Testing Techniques 4-9

Summary 4-11

V. Low Level Design and Implementation 5-1

Introduction 5-1

IDEF0 Diagram Translator Design 5-1

Translation Rules 5-3

Activity 5 3

Boundary 5-5

iv

Page

IDEFo Syntax Expert System 5-5

Rule Base. 5-8

Activity IDEF0 Syntax 5-S

Boundary IDEF0 Syntax. 5-9

Software Test. 5-14

Summary 5-15

VI. Conclusions and Recommendations. 6-1

Introduction. 6-1

Conclusions. 6-1

Recommend at ion s. 6-2

Activity. 6-2

Boundary 6-2

Summary. 6-3

Appendix A. Requirements Analysis Diagrams. A-I

Appendix B. Structured Chart. B-I

Append(ix C. Data Structures of SAtool. C-I

Appendix D. User's Manual. D-1

Appendix E. Programmer's Guide. E-1

Appendix F. Source Code. F-1

Bibliography BIB-i

Vita VITA- I

v

List of Figures

Figure Page

2.1. Classic Software Life Cycle Model(12:20) 2-2

2.2. An example of IDEFo Diagram 2-6

2.3. A typical Expert System Structure 2-7

3.1. Provide SAtool 3-5

3.2. Provide SA Editor 3-6

3.3. Translate Diagram 3-8

4.1. Screen Layout 4-3

4.2. SAtool Menus 4-4

4.3. IDEFo Diagram with Parent 4-6

5.1. Data Flow Diagram for IDEFo Diagram Translator 5-2

5.2. A Typical Activity Box 5-3

5.3. Structure of IDEFo Syntax Expert System 5-7

5.4. Activity IDEFo Syntax 5-10

-5.5. Activity IDEFo Syntax(continued) 5-11

5.6. Boundary IDEFo Syntax 5-12

5.7. Boundary IDEFo Syntax(Continued) 5-13

vi

List of Tables

Table Page

2.1. AFIT SADT syntax used by SAtool (9:A-3). 2-5

5.1. Translation Rules for Activity Box 5-4

5.2. Translation Rules for Boundary Arrows. 5-6

vii

AFIT/GCS/ENG/90J-02

A bstract

This thesis effort focuses on designing and implementing the Knowledge-Based

Software Assistant System (KBSAS) for the Structured Analysis Design Technique

(SADT) method developed by Softech, Inc.-"

A Graphics Editor 7 is used to create specific Structured Analysis (SA) dia-

grams and a graphical symbol syntax is derived from these diagrams. The devel-

opment of the KBSAS is divided into two parts: the design and implementation

of a graphics translator and an application of a knowledge-based system for syntax

checking.

First, the objective of the translator is to map a subset of the graphical symbol

syntax from a SA diagram into the first order predicate calculus. The SA diagram

information is represented in a set of predicate data forms.

Secondly, the objective of a knowledge-based system is to evaluate adherence

to proper SADT syntax. This is accomplished by generating SA rules associated

with either an activity box or boundary arrows. The requirements analyst and the

designer are provided with a means of recovering from a graphical symbol syntax

error(s) through a display window.

Specific emphasis focuses on a comprehensve mapping of the graphical symbol

syntax to predicate logic as well as development of an application of a rule-based

system using this capability.

'SADT is a trademark of Softech, Inc.
2developed by Steven E. Johnson at the Air Force Institute of Technology.

viii

EXPERT SYSTEM IN SOFTWARE ENGINEERING USING

STRUCTURED ANALYSIS AND DESIGN TECHNTQUE(SADT)

I. hItroduction

Bf(ckq)V u))

There have been several thesis efforts in the field of Computer-Aided Software

I. iigmecerlig (CASE) tools to support the analysis and1 design stages of the software

prcs at t he Air Force Institute of Terchnology (A FIT). One of these efforts was a

Graphics Editor for st ructutredl analysis withl dlata dictionary snlpl)ort (9

The S,,tool is one(of several requliremenlts analysis and design CASE tools based

onl thle lIFF synltax2 . This tool provides a mueanis of developing Ll)EFo diagranms

3 adl dlata (ictioriarv support.. This tool also saves information derived from the

diagrams; however, SAtool (loes not have the capability of checking IDEF0 syntax.

To solve this problem, a validation scheme for checking the consistency of IDEF0o

il iodology and p)rovid1ing err-or nmessages with error recovery is requijred. Using

lhe predlicate (data form, a specific ID)FE) (iagraili from tHie SAtool is evaluated

for adherence to proper SADIT syntax through thle iise of a knowledge-based expert

system (IKBES). The earlier version of thle validlation tool was hosted on the SUN

workstations"4 with the expert system written in Prolog- I and run onl a ZenithI Z-248

compuiter (10).

'The Graphics Editor is called SAtool.
"I DEFO is a version of Sofl'ech's SA I)T.
'Somietimnes Il)EF0 diagrams are called SAIXI dliagramls.
4S UN is a trademark of SUN Microsystems, Inc.

The intent of this thesis effort is to continue the earlier investigation by expand-

ilg tlie rule set, thereby developing a more integrated environment and analvzing

its performance.

.Sfth m1rlt of the Problctn

The specific objectives of this thesis investigation are to extend the earlier

predicate calculus definitions of SADT syntax to the more complete set of SADT

(onstructs, to extend the expert system rule set based on the new definitions, to

iitcgrate the graphical translation process in C with the expert system on a SUN

workstation, and also if time permits, to use the structure of the knowledge-based

SAI)T syntax systen to incorporate the design knowledge of a specific software

application.

For the purpose of this investigation, several assumptions were made.

1. The primary users of this tool are AFIT graduate students and faculty.

2. The users of this tool are familiar with the Structured Analysis methodology.

3. The users of this tool are familiar with the SAtool.

4. Although not necessary, the users of this tool are also familiar with Prolog.

Ihsca rch. Approach

The thesis objective is accomplished through the development of two major

components: an IDEF0 Diagram Translator and an IDEF0 Syntax Expert System.

The II)EF0 syntax for SAtool was studied, followed by a review of the design and

imnpleimentation of SAtool. The previous syn~tax rules of the syntax validation tool

were also reviewed. These were updated and changed as necessary to reflect the

development of the new system. The reusal)le components of t he syntax validation

1-2

tool were extracted, new code was written, and new syntactical rules were generated

to implement the changes considered by the analysis.

The IDEF0 Diagram Translator has three parts. The function of the first part

is to create a set of predicate data forms from a SAtool activity box in the IDEF0

Diagram in order to check the activity IDEF0 syntax. The function of the second part,

is also to generate a set of the predicate data forms from the current IDEFo Diagram

and its parent IDEF0 diagram in order to check the boundary IDEF0 syntax. In the

third part, the objective is to create a file for the current IDEFo diagram in the form

of a set of the predicate data to speedically check the boundary IDEF0 syntax.

The IDEF0 Syntax Expert System consists of two major parts: an inference

cligiue and a rule base. The inference engine was selected as backward chaining

st rategy (search) called BC35 which is a directed problem-solving (pattern matching)

process written in prolog. The rule base consists of activity rules and boundary rules.

The activity rules check the 'activity' IDEFo syntax and the boundary rules are to

check the 'boundary' JJ)EF0 syntax.

The systen checks IDEF0 syntax, displays error messages, and provides editing

suggestions interactively.

All software conformed to the software engineering standards in AFIT's System

Dc,'clopmint Documentation Guidelincs and Standards draft, #4 (8).

Materials and Equipment

The materials and eouipment for this effort were provided by the AFIT De-

partment of Electrical and Computer Engineering. The following items were used:

1. SUN workstations.

2. Berkeley Unix 6 version 4.3.

'devcloped by Dr. Frank M. Brown at. AFIr.
'Unix is a trademark of ATkT.

1-3

3. Suncore graphics and Suntools environment.

4. The software developed in this thesis effort.

5. Prolog environment.

Overview of Thesis

This thesis is divided into six chapters. Chapter I explains the history of AFIT's

CASE tools based on SADT syntax and defines some of the terms to be used. Chap-

ter II presents a literature review of the current issues that affect this thesis effort.

The requirements for the translator and the expert system for this thesis effort are

presented in chapter III. Chapter IV and V describe the high level and detailed de-

sign and implementation phases respectively. In chapter VI, the conclusions and the

recommendations are addressed for this thesis effort.

1-4

II. Literature Review

Jntroductio

The focus of this thesis investigation is to design and implement an application

of expert system formulation for checking the syntax of IDEF0 diagrams as derived

from SAtool. The current SAtool is one of requirements analysis CASE tools based on

the IDEFo syntax which is a subset of SADT syntax. The purpose of this literature

review is to discuss the issues of the requirements analysis phase, AFIT Structured

Analysis Syntax as a subset of IDEF0 syntax, and a rule-based expert system

architecture.

Requirements Analysis Phase

The software life cycle represents the functionally distinct portions of develop-

iuent and use of a software product from birth to death. The classic life cycle model

as shown in Figure 2.1 may be divided into six major phases: system engineering and

analysis phase, software requirements analysis phase, design phase, implementation,

testing, and finally maintenance phase (3). The requirements analysis process fo-

cuses specifically on software by definition. To understand the nature of the software

to be built, the software analysts must understand the information domain for the

software, as well as the required function, performance expectations, and interfacing

(12). Analysts should develop the software specification using a documentation tool

so that they may later compare the requirements against the solution because a com-

plete specification of software requirements is imperative to the success of a software

development effort. No matter how well-designed or well-coded, poorly specified

software will disappoint the user and bring grief to the developer (12). A number of

software analysis and specification methods have been developed and each method

has its own notation and point of view; however, there is a set of general principles

for requirements analysis:

2-1

System

Engineering

Reureet

Analysis

f- I Design

C ode
Testing

, .. I n
Maintenace

Figure 2.1. Classic Software Life Cycle Model(12:20)

2-2

1. The information domain and the functional domain of a problem must be

represented by syntax and understood by humans.

2. The problem must be partitioned in a manner that uncovers detail in a hier-

archical fashion.

3. Logical and physical representations of the system should be developed (12).

Many requirements analysis methods and tools have been developed during the

past decade. The methods and tools may be divided into three broad analysis cat-

egories: data flow-oriented analysis, data structure-oriented analysis and language-

based formal specification (12). The software requirements analysis methods were

originally developed to be applied manually; however, each of these methods is avail-

able in a computer-aided format (12). Several of computer-aided analysis tools have

been developed to automate the generation and maintenance of what was originally a

manual method. These tools make use of a graphical notation for analysis. This class

of tools produces diagrams, aids in problem partitioning and maintains a hierarchy of

information about the system (12). These CASE tools enable the analyst to update

information and compare the connections between new and existing representations

of the system. For example, the SAtool enables the analyst to produce a structured

analysis diagram and a data dictionary and maintain these in a data base that can

be analyzed for correctness, consistency, and completeness. The computer-aided

requirements analysis approach provides benefits as followings:

9 improved documentation quality through standardization and reporting

e better coordination among analysts in that the data base is available to all

e gaps, omissions, and inconsistency are more easily uncovered through cross-

reference maps and reports

* the impact of modifications can be more easily traced

* maintenance costs for the specification are reduced (12:200).

2-3

AFIT Structured Analysis Syntax

The SADT syntax is based on a tabulation of some 40 notations in a paper

by Douglas T. Ross of Softech, Inc. (14). The notations give the definitions and

the semantics of the SADT graphic language. The SADT methodology provides a

means of handling large complex system problems. The SADT notations consist of

two major constructs: rectangular boxes and arrows. Rectangular boxes, identified

as verbs (activities), provide for the decomposition of the system parts. Arrows,

labeled with nouns (data structures), represent the data flow relationship among the

rectangular boxes. The rectangular boxes, arrows and English text build a diagram

which represents the whole system.

The U.S. Air Force Program for Integrated Computer-Aided Manufacturing

(ICAM) has developed the IDEF0 (ICAM Definition Method Zero) ' language.

IDEFo syntax is a derivative of the SADT syntax and is used for software require-

ments analysis. The AFIT Structured Analysis syntax implemented by SAtool is

represented in Table 2.1 (9).

Column 1 in the table shows the line numbers of the SADT graphical notations

(14:20). Column 2 shows the name by which each notation was referenced in SAtool.

Column 3 indicates the page in the SAtool User's Manual (9).

The SAtool provides a means of drawing the IDEF0 diagrams and storing infor-

mation derived from the diagrams. Each diagram is drawn and stored individually.

An example of an IDEF0 diagram drawn by SAtool is shown in Figure 2.2. Box1,

Box2, and Box3 are for ACTIVITY NAMEs and the numbers in the rectangular

boxes represent NODE NUMBERs. The numbers in small rectangular boxes show

FOOTNOTEs. The label in a small circle is for TO/FROM ALL. Inl, Out2, Con22,

Mechl, and etc. represent line LABELs for INPUT, OUTPUT, MECHANISM, and

'See the reference 17. ICAM Definition method IDEF0 Sep.1979.

2-4

Ross Article Term User's Manual

Line Number Reference

1 BOX 2-2,3
2 ARROW 2-2,3
3 INPUT 3-26 (FIG)
3 OUTPUT 3-26 (FIG)
4 CONTROL 3-26 (FIG)
5 MECHANISM 3-11
6 ACTIVITY NAME 2-3,4
7 LABEL 2-3,4
12 BRANCH 3-9
13 JOIN 3-9

14 BUNDLE 6-14
15 SPREAD 6-14
18 BOUNDARY ARROW 3-17
20 DETAILED REFERENCE NUMBER 2-3
22 2-WAY ARROW 3-26 (FIG)
24 TUNNEL ARROW 2-3
25 TO/7FROM ALL 6-21
27 FOOTNOTE 3-26 (FIG)
28 META-NOTE 2-3
29 SQUIGGLE 3-26 (FIG)
30 C-NUMBER 2-3

31 NODE NUMBER 2-3
32 MODEL NAME 3-26 (FIG)
33 ICOM CODE 4-8
37 FACING PAGE TEXT 4-1
38 FEO (FOR EXPOSITION ONLY) 6-5
39 GLOSSARY 2-3
40 NODE INDEX 2-3

Table 2.1. AFIT SADT syntax used by SAtool (9:A-3)

2-5

AUTHOR: Intaek Kim ODATE:15/83/901READER I

PROJECT: Example IREV: 1.8 bDATE I

ED CoInon C

IMl

NODE: ITLE: ake an ExamleNHE:C2
Al 2 12t

Fiur 2.2 A eamleof DE 0 iara

2-6t

Knowledge
Base

(Rules)
Inference /L_ User
Engine Interface

Data Base

(Working

Memory)

Figure 2.3. A typical Expert System Structure

CONTROL. 11, C1, 01, M1, and etc. also represent ICOM CODEs for boundary

arrows.

Expert System

Knowledge-based expert systems are likely to be applied to requirements
analysis tasks. However, the definition of the knowledge base (facts, rules,
and necessary inferences to perform analysis) will remain a significant
challenge in the foreseeable future. (12:201)

Figure 2.3 presents the components of a general expert system: knowledge base

(rules), data base (facts; working memory), inference engine, and user interface.

The knowledge base can be represented by many different methods, such as

predicate calculus, lists, frames, semantic nets, production rules, etc. In this thesis

effort, the language of if-then rules was selected to represent the knowledge base, since

it provides several features which are modularity, incrementability, modifiability, and

transparency of the system. The if-then rule consists of two parts : condition and

conclusion. The logical condition part may contain one or more premises linked by

the conjunctions AND, OR, or NOT. If the conditions are true (met), the conclusion

part is also true (fired).

2-7

The data base is a portion of working memory where the current status of

problem is stored. Initially, the lists of object, attribute, and value (OAV) triple

derived from a IDEF0 diagram are stored. Then the new lists of OAV triple from

the inference process are added. The data base also stores a list of rules that have

been examined, and fired in some order. The rule order can be givcn later if the user

or developer requires an explanation of the reasoning process.

The inference engine is called a rule interpreter because its operation is like

a software interpreter for a computer language. The rule interpreter examines the

rules in a specific order searching for matches to the initial and current conditions

given in the working memory. As the rules continue to fire, they will reference one

another and form an inference chain. The firing of a rule may add new facts to the

working memory, which gives the rule interpreter additional information on which

to proceed. This process continues until the solution is found.

Given a desired goal, there are two basic approaches in searching for a solution:

forward chaining and backward chaining. In forward chaining, the rule interpreter

tries to match a fact in the working memory to the situation stated in the condition

part. If a fact in the working memory has been matched, then that rule is fired.

The conclusion part could generate a new fact that is stored in the knowledge base.

This new fact may be used in the search for the next proper rule. This process

continues until the solution of the given goal is satisfied. In backward chaining, the

rule interpreter starts examining the conclusion part to look for a match. If a match

is found, then the working memory is updated recording the conditions that the

rule stated as necessary for supporting the matched conclusion (13). The backward

chaining process continues with the system repeatedly attempting to match the

conclusion part against the current system's status. The corresponding condition

parts matched are used to produce new intermediate goal states which are recorded

in the working memory. This process continues until the given goal is proved.

Finally, the user interface provides a means of communication between the

2-8

user and the system. The user interface asks questions or presents menu choices for

entering initial facts in the data base. Any intermediate communications during the

problem-solving process are taken care of by the user interface.

Expert systems are far more useful if they have the following additional fea-

tures:

" Modularity:

Each rule defines a small, relatively independent piece of knowledge.

* Incrementability:

New rules can be added to tL -knowledge base relatively independently of other

rules.

" Modifiability (as a consequence of modularity):

Old rules can be changed relatively independently of other rules.

" Support system's transparency (4:316-317).

Summary

This thesis effort concentrates on translating an IDEF0 diagram drawn by the

SAtool into a set of predicate data forms during requirements analysis. It also focuses

upon developing an application of a rule-based expert system for evaluating IDEF0

syntax. The literature review in this chapter provides understanding concerning the

main subjects of this thesis investigation: requirements analysis phase of software

development, IDEF 0 syntax, SAtool, and rule-based expert system components.

2-9

III. System Requirements Analysis

Introduction

This thesis investigation is classified into two major categories. First, the

IDEFo Diagram Translator is to be redesigned and reimplemented to translate any

IDEFo diagrams drawn by SAtool into a set of predicate data forms. It should create

a necessary file to be used for checking IDEF0 syntax. The second category is to

design and implement the IDEFo Syntax Expert System which is an application of a

knowledge-based expert system.

This chapter presents the considerations related to the development of the

IDEFo Diagram Translator requirements, IDEF0 Syntax Expert System require-

nents, formalization criteria, the IDEFo diagrams of this tool, and validation test

requirements.

Considerations of the Previous Studies

The SAtool provides an interactive graphics editor for drawing IDEF0 diagram

and a means of generating data dictionary information (9:3-2). The SAtool also

provides the capability to check IDEF0 syntax for an activity box in any IDEFO

diagrams(10:2-1). The SAtool does not provide a means of checking IDEF0 syntax for

any boundary arrows with the parent IDEFo diagram, however, the SAtool provides

a means of checking IDEFo syntax for only one activity box in any IDEF 0 diagram.

The current SAtool checks IDEF0 syntax through Zenith Z-248 workstations using

the expert system written in Prolog-1. The improved tool in this thesis effort should

interface with the SAtool, produce a set of predicate data forms for the activity boxes

and the boundary arrows information in any IDEF0 diagrams, and provide the more

completed capability of checking IDEF0 syntax. Also, the revised tool should satisfy

all requirements of the previous SAtool (9).

3-1

IDEFo Diagram Translator Requirements

The function of the IDEF0 Diagram Translator is to generate the predicate

data forms from any IDEFo diagrams. The IDEF0 Diagram Translator should act

as a bridge between the current SAtool and the IDEFo Syntax Expert System. The

current SAtool was written in the C language and used graphics software packages

called SunView and SunWindow environment. Thus, the IDEFo Diagram Translator

should operate with the current SAtool. Since the current SAtool provides a means

of checking IDEF0 syntax for only one activity box, to check syntax for boundary

arrows, the IDEF0 Diagram Translator should be redesigned and reimplemented

in the C language. The predicate data forms generated by the IDEF0 Diagram

Translator should be the initial data base for the IDEF 0 Syntax Expert System. It

is 1cCessarv to formalize the IDEFo syntax to produce the predicate data forms and

to check the IDEFO syntax in the IDEF0 diagrams. IDEF0 syntax is formalized as

follows:

1. The formal definition of IDEF0 syntax must contain the syntax information in

any IDEF0 diagram and be described syntactically,

2. provide the means to determine syntax errors in any IDEF0 diagram,

3. provide a domain where the definition of consistency can be given,

4. serve as the final arbiter in cases where there is disagreement concerning the

exact meaning of the representation, and

5. should be able to be implemented in a computer system (10:2-3).

The next section, Requireme nts analysis DiagramIns, describes the functional

decompositions for the IDEFo Diagram Translator.

3-2

IDEFo Syntax Expert System Requirements

The IDEF0 Syntax Expert System should allow the user to check the activity

IDEF 0 syntax and the boundary IDEF0 syntax in any IDEF0 diagrams using a

created predicate data file.

The backward chaining search is useful when there are many more rules than

desired goals. A backward chaining inference engine was selected called BC31 which

directed problem-solving processes and acts as a rule interpreter (6) because the

backward chaining strategy is useful when there are many more rules than desired

goals. The rule base should be able to support the knowledge of IDEFo syntax with

the inference engine in accordance with the activity boxes and the boundary arrows.

To simplify the rule base, the rule base should be consisted of two separate parts

because the boundary arrows information is not necessary in checking the activity

IDEFo syntax and the activity boxes information is not needed for examining the

)oundary IDEF0 syntax. The first part, called the Activity IDEFo Syntax rule base,

should allow the checking of the Activity IDEF0 Syntax using a created predicate file

which includes all information pertaining to an acivity box in any IDEFo diagram.

The second part, called the Boundary IDEFo syntax rule base, should allow for

the checking of the Boundary IDEF0 Syntax using a created predicate file which

includes all information pertaining to the boundary arrows in any IDEF0 diagram

and its parent IDEFo diagram.

Validation Test Requirements

Some parameters can be used for evaluating the conformity of the requiremlents

with the tool. As mentioned in Chapter I, the important parameters are the accuracy

with which the tool checks the IDEF0 syntax and the capability of which the tool

interactively displays error messages and editing suggestions. Other parameters to

be considcred are user friendliness, maintainability, coinpatibility, and consistency.

1developed by Dr. Frank M. Brown at AFIT.

3-3

Rcquirements Analysis Diagrams

This section presents the functional model which defines and describes the

functional decompositions for the IDEF0 Diagram Translator and the IDEF0 Syntax

Expert System discussed in the previous sections. The IDEF0 diagrams in this

section are based on the analysis of processes or activities and illustrate one level

of the functional decomposition with the facing page text. The facing page text

provides additional information that is not easily inferred from the diagram. The

Data Dictionary entries provide even more detailed information in accordance with

each activity and data item (22:4-5).

Figure 3.1 shows the top most level IDEF0 diagram for the overall system of the

SAtool. The purpose of the Provide SAtool function is to create and edit an IDEF 0

diagram, its data dictionary information, and the facing page text interactively (9).

The function also involves the process which produces the predicate data forms to

be used for the knowledge base of the IDEF0 Syntax Expert System.

Figure 3.2 displays the first decomposition of the top most level of Provide

.Sltool activity. This decomposition shows the two primary functions: Provide SA

Editor and Translate Diagram. The Provide SA Editor function is to draw the

activity IDEF0 diagram and to generate its data dictionary information and its

pacing page text for activity and data entry. The Translate Diagram activity provides

a means of translating [DEF0 diagrams into predicate data forms.

Figure 3.3 shows the decomposition of the Translale Diagram activity into three

functional coml)onents: Translate Activity, Translate Boundary, and Save Diagram.

The Translate Activity provides a means of translating an activity box in any IDEF0

diagrams into a set of predicate data forms through the translation rules of the

activity box and saving it into a temporary file. The Translate Boundary operation

is the process which translates the boundary arrows in any IDEF0 diagrams into a

set of predicate data forms through the translation rules of the boundary arrows and

saves it into a temporary file. Finally, Save Diagram provides a means of translating

3-4

A-0 Provide SAtool

Abstract: Provide SAtool provides a means of mechanism by
which the user is able to draw Activity IDEFO Diagrams.
From these diagrams, Facing Page Text and Data Dictionaries
for Activities and Data and Predicate Data forms are
generated.

AUTHOR: Capt Kim, intaek OATE:04/10/90 READER

PROJECT: SAtool IREV: 1.1 DATE I

User Interface Tanslation Rules

00 Defnitions-

_lProvide I Facing age iTx
User Files .SAtool [IDEFO Ditaqram

7 I CRT Info-
Predicates-

NODE: ITLE: Provide SAtool NLHBER: C-1
A-0

Figure 3.1. Provide SAtool

3-5

AO Provide SAtool

Abstract: Provide SAtool provides the user a mechanism by
which the user is able to draw Activity IDEFO Diagrams.
From these diagrams, Facing Page Text, Data Dictionaries for
Activities and Data, and Predicate Data forms are generated.

Al Provide SA Editor provides a means of drawing
Activity IDEFO Diagrams. From these diagrams, Facing Page
Text and Data Dictionaries for Activities and Data are
generated.

A2 Translate Diagram provides a means of translating
IDEFO Diagrams into Predicate Data Forms.

AUTHOR: Capt Kim, Intaek DATE:38/81/90 READER

PROJECT: SAtool REV: 1.1 DATE I

e C2
ser Interface Translation Rules

I~rvld IDO Definitions,,
ProvideFacing Page Text D01

User files SA Editor CRT Info
02

1I 1 IDF Diagram ;D
-03

Transla

NODE: ITLE: Provide SAtool NLHBER: C-2
AO

Figure 3.2. Provide SA Editor

3-6

the IDEF0 diagram into a set of predicate data forms and saving it into a file which is

specified by the user. Further functional decompositions are presented in Appendix

A.

Summary

This chapter presented the requirements analysis for the development of IDEF'

Diagram Translator and IDEF0 Syntax Expert System. Since this investigation

extends the earlier version of the SAtool, this too] should satisfy all requirements

of the earlier version. This tool should also provide a means for displaying error

messages and editing suggestions. The functional decompositions for this tool was

presented in Requirements Analysis Diagrams section.

The next two chapters use the requirements developed in this chapter as the

fundamental for designing, implementing, and testing of IDEFo Diagram Translator

and IDEF0 Syntax Expert System.

3-7

A2 Translate Diagram

Abstract: Translate Diagram provides the user a means of
translating IDEFO Diagrams into Predicate Data Forms.

A21 Translate Activity provides a means of translating
an activity box in any IDEFO Diagrams into a set of predicate
data forms through the translation rules of the activity box.

A22 Translate Boundary provides a means of translating
the boundary arrows in any IDEFO Diagrams into Predicate data
forms through the translation rules of the boundary arrows.

A23 Save Diagram provides a means of translating the
IDEFO Diagram into a set of the predicate data forms and
saving it into a file which user specifies interactively.

AUTHOR: Intaek kim DATE:38/81/98READER I I I

PROJECT: SAtool REV:1.6 DATE

Translation Rules Ci C2

'User Interface ____ _______

10
Trransla

IDE8 iar. I W Actiityirediate

te Bounda ['

ry 2

(L]Activity Predicates

0 Boundary Predicates
] Diagram Predicates

NODE: ITLE: Translate Diagram NUMBER: C-3
A2 I

Figure 3.3. Translate Diagram

3-8

IV. High Level Design

Introduction

The purpose of this chapter is to present and justify the preliminary software

design for the IDEF0 Diagram Translator (IDT) and the IDEF0 Syntax Expert Sys-

tem (ISES). Throughout the remainder of this investigation, IDT and ISES refer to

these two particular systems. Preliminary design is associated with the transforma-

tion of requirements into the software architecture. The transformation starts with

several considerations of previous studies addressed in Chapter III. The modified

screen layout and menu selection are then presented. In addition, the main func-

tions of the IDEF0 Diagram Translator, the IDEF0 Syntax Expert System, and the

associated components are introduced.

Previous Study Considerations

Since the tool should interface with the SAtool, the hardware and the software

to be used are already chosen. Thus, the Sun3 and the Sun4 workstations using

the SunOS and the SunView window-based environment are tequired for this tool

because the SAtool was developed through the Sun workstation. Also since the

IDEF0 validation tool was implemented with the C language in order to translate

the IDEF0 diagram into the predicate data forms, the C language is used to expand

the capability of the translating process. This decision is reasonable because many

portions of the validation tool and the SAtool could be directly reused. Appendix C

represents a summary of the data structures which are used for the earlier version

of SAtool and this thesis effort.

Screen Layout and Menu System

In this thesis investigation, the screen layout of the SAtool and the validation

tool should be modified by adding new menu items for checking IDEFo syntax.

4-1

Figure 4.1 is a picture of the actual screen layout used by the tool.

The actual screen is divided into five windows: the Input Window, the Message

Window, the Selection Window, the Diagram Window, and the Data Dictionary

Window in vertical order. The function of each window is the same as in the SAtool

except the function of the Selection Window. The Selection Window, located directly

below the Message Window is used for selecting the menu which contains the next

desired operation. The six ovals arranged in left to right order are: RECALL DGM,

EDIT DD, EDIT FPT, MISC FUNC, SAVE DGM, and CHECK SYNTAX. The

function of RECALL DGMis to read a previously saved IDEF0 diagram. The EDIT

DGAI function is to create and edit an IDEF0 diagram according to its attribute

menus. The function of EDIT DD is to create and edit data dictionary information.

The function of EDIT FPT is to edit facing page text of an IDEF0 diagram. The

function of MISC FUNC is to save an IDEF0 diagram, change directory, start new

diagram, and exit SAtool. The function of SAVE DGM is to save the graphics

information (.gph extension) and the data dictionary information (.dbs extension) in

files under the name provided by the user. Finally, The CHECK SYNTAX function

is to translate and save IDEF0 diagrams as predicate data forms and to check IDEFo

syntax. Figure 4.2 presents a picture of all menu selections to be used and their

decompositions.

Since the functions of all menu selections are the same as those of the SAtool

except Activity, Boundary, and Save (.pro) selections, the other detailed descriptions

of the functions of the menu selections except for above three are available in reference

(9). Further descriptions of Activity, Boundary, and Save (.pro) selection functions

are discussed in the next section.

IDEFo Diagram Translator

The translator for the IDEF0 diagram is used to translate the IDEFo graphical

features into predicate data forms. The requirements for the formalization criteria

4-2

INPUT: DISABLED_

MESSAGE: WELCOME, Please make a selection.

REAL 04 'M ~4 EDT O DT FPT- MHISC FUNC1 FSAVE DGA4 CHECK SYNTAX7

AUTHOR: DATE: READER
1PROJECT: IREV: IDATE I

NODE: I TLE: L4E

Figure 4. 1. Screen Layout

4-3

RECALL D EDIT Line Edit Line Label

DG- EDIT Activity Box Move Line Label

EDIT Header Info Edit TO/FROM Label

DELETE Footnote Edit ICOM Label

DELETE Squiggle Redraw/Delete Line

ADD Activity Box Change Activity Name

ADD Header Info Change Activity Nme
ADD ineChange Activity Number

ADD Line- --------- Change Activity Box Location

ADD/CHANGE Footnote Delete Activity Box

________________Add Author
Edit Author AdAto

ADD DD Edit Project Add Project

ADD MORE ALIASES Edit Date Add Date

EDIT DD EDIT DD Edit Revision Add Revision

SAVE DD IN FILE Edit Node Add Node

DD-FINISHED Edit Title Add Title
Edit Number Add Number

DISPLAY FPT E NAdd ALL

EDIT FPT SAVE FPT IN FILE Bounr- -Arro
L Boundary Arrow

Tunnel Arrow
Make Diagram (Normal) To ALL
Make Diagram (Sideways) Dot-R
Change Directory Dot-L

(MISC FUNC Display Directory Arrowhead

Start New Diagram Boundary Arrow Turn-R
Redisplay Diagram Tunnel Arrow Turn-L

From ALL Branch-L
Quit (NO SAVE) Dot-T/R Branch-R

Dot-B/L Join-R
S D Save for DB Arrowhead Join-L

SAVE DGM Save Local DONE DONE

(HC YTX Activity ADFont
CHECK SYNTAX Boundary Arrow ADD Footnote

Save(.pro) Change Footnote Number
Change Footnote Location

Figure 4.2. SAtool Menus

4-4

have been discussed in Chapter III. There are many ways to formalize the graphical

language such as PSL/PSA, TAGS, SREM, and etc (12:163-209). Also, there are

lots of different ways to represent knowledge for expert system, for example rules,

semantic nets, frames, scripts, predicate logic, and others (13:63-102). In this thesis

investigation, predicate logic is used to translate an IDEF 0 diagram into a set of

predicate data forms. The predicate logic is often used as a means of knowledge

representation in expert systems and is the basis for logic programming. Many spe-

cialists r-'gard it as the single most important knowledge representation method. The

predicate logic also provides for symbols to represent objects and then allows these

symbols to be used as components of statements. As shown in Figure 4.3, the IDEF0

graphical notations used by the SAtool consist of two major constructs: activity box

and arrow. The informations related to an activity box are ACTIVITY NAME, AC-

TIVITY NUMBER, INPUT, OUTPUT, CONTROL, and MECHANISM. Although

there are many types of arrows such as BRANCH, JOIN, SPREAD, BUNDLE, and

others, the arrow type can be considered to be one of either the boundary arrow type

connected on the parent IDEF0 diagram, the tunnel arrow type, or the interboxes ar-

row type which is connected between two boxes in the same IDEF0 diagram. Among

the arrow types, only the boundary arrow type has the information of the relation-

ships between an IDEF0 diagram and its parent IDEF0 diagram. This boundary

arrow type can be considered as either boundary INPUT, OUTPUT, CONTROL,

or MECHANISM. The other arrow types are related to an activity box in an IDEF0

diagram. Thus, it is useful to translate and create separately the graphical informa-

tions for an activity box and the boundary arrows. Another reason for translating

the IDEF0 diagram into a set of predicate data forms and generating seperately its

information is to reduce the size of the predicate data file for checking IDEF0 syntax

and to provide simplicity of the knowledge base as well. Therefore, the function of

the IDEF0 Diagram Translator is divided into three parts. The function menus of

CHECK SYNTAX in Figure 4.2 show the functions of the IDEF0 Diagram Transla-

4-5

AUTHOR: In taek Kim DATE:18/8S/90 READER I I

PROJECT: figure 4.3 REV: 1.6 DATE

con ICn

NODE InE Mae x am NLHER 01

nut2_O

O

Out3/In2

Ii o__L_____ b __ -Out4.

Parent aren

F2 1

[In11 4

NODE: ITLE: Pake an Example NLHBER: C-8

AUTHOR: [ntaek Kim IDATE: 18/05/9 READER

PROJECT: figure 4.3 iREV: 1.8 wiDT P

Out2416

In2=

11 = Child I

_I n 2 0 1

12

Clhild 22

NODE: IITLE: Parent box NIBRC-

Figure 4.3. IDEFo Diagram with Parent

4-6

tor. The Activity selection menu is used to translate and create a file of the predicate

data forms automatically from an activity box clicked on by the user in any IDEF0

diagrams. The Boundary Arrow selection menu is used to translate and create auto-

matically a file of the predicate data forms from the boundary arrow information in

the current IDEF0 diagram and the predicate data file of its parent IDEF0 diagram.

Finally, Save (.pro) selection menu is used to translate an IDEF0 diagram into a set

of predicate data forms and to save it to a file that the user specifies. This saved file

is to be used for checking boundary IDEF0 syntax with the next decomposed IDEF0

diagram

IDEFo Syntax Expert System Components

The IDEF0 Syntax Expert System provides a means of checking the IDEF0

syntax in any IDEF0 diagrams using a created predicate data file. The components

of ISES are the inference engine (control strategy) which is selected as BC3, the

knowledge base (rule base) which consists of the IDEF0 syntax rules, the data base

(working memory) which is made up of a list of facts derived from the IDEF0 diagram,

and the user interface which supplies facts or other information to the ISES and

transmits expert advise to the user as shown in Figure 2.3.

Inference Engine. An inference engine applies the knowledge to the solution

of a specific problem. In general, the same control strategy can be used to reason

out all kinds of actual problems because it is separated from the knowledge base

for the particular application. One of the inference rules, called modus ponens, is

used in producing a proof which allows a fact or truth to be inferred from two other

statements. For example, if propositions P and P iunplies Q are true, then proposition

Q is true. The inference engine repeatedly applies the method of modus ponens to

the knowledge base to extract a specific value or solve a particular problem. During

consultation of the IDEF0 Syntax Expert System, the following functions should be

performed:

4-7

" interface with users

e obtain and load the knowledge base

" apply the rules in the knowledge base and the facts in the working memory to

achieve goals

" display the messages about the results of checking IDEF0 syntax.

In Chapter II, the backward chaining control structure has been represented.

Backward chaining is often beneficial when there are many more facts than final

goals (thus called goal-driven reasoning). Since the number of facts in any IDEF0

diagram is many more than that of goals for IDEF0 Syntax, backward chaining is

useful for the ISES design.

Knowledge Base. The heart of the expert system is the knowledge base, which

contains the problem-solving knowledge of the particular application. In the IDEF0

Syntax Expert System, the knowledge base is represented in the form of if... then

rules and is separated into two parts: the knowledge base of the IDEF0 syntax for

an activity box and the knowledge base of IDEF0 syntax for boundary arrows. The

former includes the IDEF0 syntax rules and goals about an activity box focused

on ACTIVITY NAME, ACTIVITY NUMBER, INPUT, OUTPUT, and MECHA-

NLSA. The latter is made up of the IDEF0 syntax rules and goals about boundary

arrows focused on boundary INPUT, OUTPUT, CONTROL, and MECHANISM.

Since the IDEFo syntax has semantic meanings, it is difficult to represent com-

pletely the IDEF0 syntax to the knowledge base. For example, ACTIVITY NAME

should be used in the form of a verb, which needs rules as many as the number of

verbs in the dictionary.

In the previous section, IDEF0 Diagram Translator, the reasons why two

different predicate data files are generated separately have been discussed. Since

the knowledge base should be consistent with the IDEF0 Diagram Translator, the

4-8

knowledge base for IDEF0 Syntax Expert System should be separated into two sub-

components. It is also necessary to separate it into two sub-components in order to

reduce the complexity arid redundency of the knowledge base because while check-

ing IDEF0 syntax for an activity box, the knowledge base for boundary arrows is

unnecessary. The names of the two separated portions of the knowledge base are the

ActivitySArule for the activity IDEF0 syntax rules, and the BoundarySArule for the

boi-idary arrow IDEFo syntax rules. A detailed discussion of IDEF0 syntax rules

follows in Chapter V.

Data Base (Working Mcmory). The data base contains a broad range of infor-

mation about the current status of the problem being solved. The temporary output

files of the IDEF0 Diagram Translator become the initial data base for the IDEF0

Syntax Expert System in accordance with checking IDEF0 syntax of the activity

box or the boundary arrow. While checking the IDEF0 syntax, the data base also

contains a list of rules that have been examined and fired. After checking IDEF0 ,

the sequence of the rules fired can be given in order to explain the reasoning process.

User Interface. The user interface allows the user to communicate with the

cxpert system and also provides the user with an insight into the problem-solving

process carried out by the inference engine. There are several ways to communicate

with the expert, system such as questions and answers, menu choices, statements, and

others. In the ISES, the user interface facility as a piece of software is contained in

the inference engine and provides a means of asking questions and answering through

the verbose and why trace operation. It also provides menu choices in order to check

IDEF,) syntax for activity box or boundary arrow.

Tcsting Techniques

There are two common techniques to test software referred to as black box and

white box testing (12:470).

-1-9

Black box testing enables the software engineer to derive sets of input condi-

tions that will fully test all functional requirements for a program. This attempts to

find errors in the following categories:

* incorrect or missing functions,

" interface errors,

" errors in data structures,

" performance errors, and

" initialization and termination errors (12:484).

\Vhite box testing is a test method based on the control structure of the pro-

cedural design. This is used to derive the following test cases:

* guarantee that all independent paths within a module have been exercised at

least once,

* exercise all logical decisions on their true and false sides,

" execute all loops at their boundaries and within their operational bounds, and

* exercise internal data structures to assure their validity (12:472).

As mentioned earlier, the black box testing method is useful at this point be-

cause it focuses on the functional requirements of the software. The functions defined

in the requirements analysis phase are compared to the requirements specification to

be sure that all requi-ements are satisfied. In the case of the IDEF0 Diagram Trans-

lator, the black box test can be applied. For example, does the IDT translate IDEF0

diagram into a set of predicate data forms which contains all syntactical information

of the IDEF0 diagram? In the case of the IDEF0 Syntax Expert System, the black

box test can also applied. For example, does the ISES contains all syntactical rules

of IDEF0 diagram comparision with the requirements specification.

4-10

Summary

This chapter presented a high level software design for the IDEF0 Diagram

Translator and the IDEFo Syntax Expert System. To be consistent with the earlier

version of IDT, several considerations of the earlier version are addressed. The

screen layout and the menu system modified were presented. In additicn to, the

main functions of the IDEF0 Diagram and the components of the IDEFo Syntax

Expert are also addressed, and the test design was introduced. The next chapter

presents low level design, implementation, and software test for the IDEF0 Diagram

Translator and the IDEFo Syntax Expert System.

4-11

V. Low Level Design and Implementation

Introduction

This chapter discusses the low level design and implementation of an IDEF0

Diagram Translator and an IDEF0 Syntax Expert System specified in the previous

design chapter. The IDT becomes a portion of the SAtool and translates IDEF0

diagrams into the predicate data forms. These predicate data forms are used for

checking IDEF0 syntax and become the initial data base (working memory) of the

IDEF 0 Syntax Expert System.

IDEFo Diagram Translator Design

The flow diagram model of the IDEFo Diagram Translator is shown in Figure

5.1. There are three components in Figure 5.1: Translate Activity, Translate Bound-

ary, and Save Diagram for the IDT. These three components accept an IDEF0 dia-

gram, User's Choice, and Parent Predicate as inputs and generate outputs such as

Activity Predicate, Boundary Predicate, and Diagram Predicate applied by Trans-

lation Rules. The function of Translate Activity is to translate an activity box in

any IDEF0 diagram into the predicate data forms and produce a file of the predi-

cate data forms. The file name of the predicate data forms for an activity box is

CHECKBOX.PRO (temporary file). The function of Translate Boundary is to trans-

late boundary information in any IDEFo diagram and the parent diagram related to

the current IDEFo diagram into the predicate data forms and generate a file of the

predicate data forms which is a temporary file. The file name of the predicate data

forms for the boundary information is CHECKBOUNDARY.PRO (temporary file).

The function of Save Diagram is to translate the IDEFo diagram into the predicate

data forms and save into a file of ".pro. The symbol * is a name which the user enters.

The *.pro file is used to check IDEFo syntax about the boundary arrows. Appendix

B shows the structure charts for the IDEF0 Diagram Translator implementation.

5-1

Translatiy Rulp-g

User' s Choice Translate Activity
Activity Predicates

Provide

|SA Editor

Diagram T r an s l a t e Boundary---

Predicates

User file

Parent

User's Choice- Save

Diagram
Translation Rules • Diagram Predicates

Figure 5.1. Flow Diagram for IDEFo Diagram Translator

5-2

CONTROL

NAME
INPUT OUTPUT

NUMBER

MECHANISM

Figure 5.2. A Typical Activity Box

The earlier version of the SAtool was implemented in C. To reuse many modules

of the earlier SAtool without modifications or with slight modifications, a decision

was made to proceed using C language for the IDEFo Diagram Translator.

Translation Rules

Since the IDEF0 Diagram Translator consists of three components, it is rea-

sonable to discuss the translation rules according to Activity and Boundary.

Activity. A typical drawing model for an activity box is shown in Figure 5.2.

The IDEF0 Diagram Translator should produce Activity Predicate data forms which

include all graphical information of an activity box. As discussed in Chapter IV,

the information of an arbitrary activity box, which is based on NAME, NUMBER,

INPUT, OUTPUT, CONTROL, and MECHANISM is shown in Figure 5.2. Among

the information, the NAME is a key information because the other information

depends on the NAME. For example, if the NAME is known among activity boxes,

the other information can be extracted easily. Table 5.1 presents the translation

5-3

Term Predicate Triple

NAME activityname(is, NAME) [activityname, is, NAME]

NUMBER NAME(numberis, NUMBER) [NAME, number-is, NUMBER]

INPUT NAME(inputis, LABEL) [NAME, inputis, LABEL]

OUTPUT NAME(outputis, LABEL) [NAME, outputis, LABEL]

CONTROL NAME(control-is, LABEL) [NAME, controlis, LABEL]

MECHANISM NAME(mechanismis, LABEL) [NAME, mechanismis, LABEL]

NUMBER OF NAME(has-input-number, [NAME, hasinput-number,
INPUTS COUNT) COUNT]

NUMBER OF NAME(has-control-number, [NAME, has-output-number,
OUTPUTS COUNT) COUNT]

NUMBER OF NAME(has-control-number, [NAME, has control-number,
CONTROLS COUNT) COUNT]

NUMBER OF NAME([NAME,

MECHANISMS, has-mechanism.number, has-mechanism-number,
COUNT) COUNT]

Table 5.1. Translation Rules for Activity Box

rules for an activity box. Column 1 in the table 5.1 presents the information items

of an activity box. Column 2 shows predicate data forms of the items. Since the

predicate data forms produced by IDEF0 Diagram Translator become the initial

data base of the IDEF0 Syntax Expert System, each item of the predicate data form

should be represented by a three-element list of the triple form: [Object, Attribute,

Value]. Column 3 shows the triples of the items. The triple form is used as the

actual input of the IDEF0 Syntax Expert System. The activity box name, NAME,

is translated into the predicate activityname(is, NAME), which means activity box

is named as NAME. The predicate NAME(number-is, NUMBER) for NUMBER

means the number of activity box NAME is NUMBER. In the case of INPUT, it is

translated into the predicate NAME(inpulis, LABEL), which means the input of

5-4

activity box NAME is LABEL. Similarly, in the case of OUTPUT, CONTROL, and

MECHANISM, they are easily translated into the predicate data forms as shown

in the table 5.1. In the case of NUMBER OF INPUTS, it is translated into the

predicate NAME(has-input-number, COUNT), which means activity box NAME has

COUNT INPUTS. This information is used for checking the number of inputs which

is limited and the boundary arrow. Also, NUMBER OF OUTPUTS, NUMBER OF

CONTROLS, and NUMBER OF MECHANISMS are translated similarly.

Bounda? y. The type of a boundary arrow is one of either input, output, con-

trol, or mechanism. These are the touched arrows of an activity box as well. Since

the boundary arrows should be related to the current IDEFo diagram and an activ-

ity box of the parent IDEF0 diagram, the predicate information of the activity box

should have been saved already. Table 5.2 shows the translation rules for boundary

arrows. BOUNDARY INPUT in column 1 is translated into the predicate bound-

ary-input(is, LABEL) in column 2, which means LABEL is a boundary input. The

triple [boundary-input, is, LABEL) in column 3 represents the actual data base form

for the IDEF0 Syntax Expert System. BOUNDARY OUTPUT, BOUNDARY CON-

TROL, and BOUNDARY MECHANISM are translated similarly as shown in Table

5.2. NUMBER OF BOUNDARY INPUTS is translated into the predicate bound-

ary-input(has-number, COUNT), which means the number of boundary inputs is

COUNT. In the case of NUMBER OF BOUNDARY OUTPUTS, NUMBER OF

BOUNDARY CONTROLS, and NUMBER OF BOUNDARY MECHANISMS, they

are each translated as shown in Table 5.2.

IDEFo Syntax Expert System

The detailed structure of the IDEFo Syntax Expert System is shown in Figure

5.3. Since the user interface portion is contained in the inference engine as discussed

in Chapter IV, this is not mentioned in this chapter. Thus, the IDEF0 Syntax

Expert System consists of three major components: Rule Base, Working Memory,

5-5

Term Predicate Triple

BOUNDARY boundary-input [boundary-input
INPUT (is, LABEL) is, LABEL]

BOUNDARY boundary-output [boundary-output
OUTPUT (is, LABEL) is, LABEL]

BOUNDARY boundary-control [boundary-control
CONTROL (is, LABEL) is, LABEL]

BOUNDARY boundary-mechanism [boundary-mechanism
MECHANISM (is, LABEL) is, LABEL

NUMBER OF'
BOUNDARY boundaryinput boundaryinput

INPUTS (has-number, COUNT) has-number, COUNT

NUMBER OF boundary-output f boundary-output
BOUNDARY (has-number, COUNT) has-number, COUNT
OUTPUTS

NUMBER OF boundary-control [boundary-control
BOUNDARY (has-number, COUNT) has-number, COUNT
CONTROLS

NUMBER OF boundary mechanism [boundary-mechanismBOUNDARY
MEC ANISMS (has-number, COUNT) has-number, COUNT

Table 5.2. Translation Rules for Boundary Arrows

5-6

Rule Base

ActivitySArule

BoundarySArule

Inference

Engine
~(BC3)

Working Memory

Activity

Predicate

SBoundary

Predicate

Figure 5.3. Structure of IDEF0 Syntax Expert System

and Inference Engine as shown in Figure 5.3.

The detailed discussion of the Rule Base is given in the next section, Rule

Base. The Working Memory (Data Base) is initially set up by the predicate out-

put of the IDEF0 Diagram Translator. The predicate output is a collection of fact

tripples discussed in the previous section, Translation Rules. The inference engine,

BC3, which directed problem-solving processes and acted as a rule interpreter, was

available. BC3 is a shell for a backward chaining expert system. Since the backward

chaining strategy is good when there are many more facts than final goals, BC3 is

suitable for use as the inference engine of the IDEF0 Syntax Expert System. Also,

5-7

since BC3 was originally used on the Zenth Z-248 workstations, in order to run it

on the Sun workstations, BC3 should be modified. The modified BC3 is listed in

appendix F.

BC3 was implemented in Prolog-1 which is a dialect of many Prolog languages

and is for the personal computer. To reuse BC3 with slight modification, Quintus

Prolog, which is available on the Sun workstations, was selected to implement the

inference engine for the ISES.

Rule Base

The inference engine (BC3) applies each element of the rule base to the solution

of the specific domain. The specific domain is divided into two categories, one for

an activity box and the other for the boundary arrows in any IDEFo diagram. Thus

the rule base (IDEF 0 Syntax) is separated into two parts: Activity IDEF0 Syntax

and Boundary Arrow IDEFo Syntax.

Activity IDEFo Syntax. The Activity IDEF0 Syntax focuses on an activity box

in any IDEF0 diagram as shown Figure 5.2. The following list in English sentences

is extracted from Figure 5.2 for Activity IDEF0 Syntax.

* An acti. y box must have a name.

e An activity box must have a number except for the top-most level activity box.

* An activity box must have at least a touched control arrow and a touched

output arrow.

e If an activity box has touched arrows, the arrows must have their arrow labels.

* If an activity box lies in the top-most level, the box number must be empty.

* If an activity box is not in the top-most level, the box number must be within

1 to 6.

5-8

" In the case of CONTROL and OUTPUT, the number of touched arrows must

be within I to 5.

* In the case of INPUT and MECHANISM, the number of touched arrows must

be within 0 to 5.

Figures 5.4 and 5.5 show a more detailed Activity IDEF0 Syntax according to above

English sentences.

Column 1 in Figure 5.4 and 5.5 shows the cases of INPUT, OUTPUT, and

NUMBER in the figure 5.2. In the case CONTROL and MECHANISM, if-then

rules are similar to OUTPUT and INPUT respectively. Column 2 presents all the

diagram types which the user could possibly draw. Column 3 shows if-then rules

related to the possible drawings. As shown in Figure 5.4, Activity IDEF0 Syntax

focuses on whether NAME, INPUT, OUTPUT, CONTROL, MECHANISM, and

NUMBER are correct or not. Thus the goals for Activity IDEF0 Syntax rules become

a list of triples about NAME, INPUT, OUTPUT, CONTROL, MECHANISM, and

NUMBER.

Boundary IDEFo Syntax. The Boundary IDEF0 Syntax is associated with

boundary arrows of an IDEFo diagram and its parent IDEF0 diagram. The following

english sentences represent the Boundary IDEF0 Syntax.

* There must be an activity box in the parent IDEF0 diagram.

" The number of input, output, control, or mechanism arrow(s) of the parent

activity box must be equal to that of the boundary input, output, control, or

mechanism arrow(s).

* Each arrow of the parent activity box must have its label.

" Each boundary arrow must have its label.

* Each boundary arrow label must correspond with label of the parent activity

box arrow.

5-9

Case Diagram If-then rules

If there is no input arrow then
--- INPUT is correct on the activity

box.

If there is at least a blank LABEL

INPUT then there is a LABEL error on the

(MECHANISM) activity box.

If the number of input arrows is
greater than 5 then the number of
input arrows should be reduced.
Otherwise, INPUT is correct.

If there is no output arrow then
there is an OUTPUT error on the
activity box.

If there is at least a blank LABEL
OUTPUT then there is a LABEL error on the

(CONTROL) activity box.

If the number of output arrows is
greater than 5 that of output
arrows should be reduced.
Otherwise, OUTPUT is correct.

If the activity box is the top-most
level and NUMBER is empty then NUMBER
of the activity box should be empty.

If the activity box is the top-most
level and NUMBER is not empty then

NUMBER NUMBER NUMBER of the activity box should
be empty.

If the activity box is not the top-
most level and NUMBER is greater
than 0 and less than 7 then NUMBER
of the activity box is correct.
Otherwise, NUMBER of the activity
box is beyond the limitation.

Figure 5.4. Activity IDEFo Syntax

5-10

Case Diagram If-then rules

If there is no activity box name then

NAME Nthere is a NAME error on the activity
box.

If there is a NAME on the activity
box then NAME is correct.

Figure 5.5. Activity IDEFo Syntax(continued)

* In the case of (boundary) CONTROL and (boundary) OUTPUT, the number

of arrows must be greater than or equal to 1 and less than 6.

* In the case of (boundary) INPUT and (boundary) MECHANISM, the number

of arrows must be within 0 to 5.

Figure 5.6 represents the more detailed Boundary IDEF0 Syntax. Column 1

in Figure 5.6 and 5.7 shows the cases of Boundary Input and Boundary Output. If-

then rules for Boundary Mechanism and Boundary Control are similar to Boundary

Input and Boundary Output respectively. Column 2 shows the models of a par-

ent activity box which is possibly drawn focused on INPUT(OUTPUT) arrow(s).

Column 3 shows the models of Boundary Input(Output) arrow(s) which is possibly

drawn. Column 4 presents if-then rules about the Boundary IDEF0 Syntax. Bound-

ary IDEF0 Syntax focuses on whether the boundary arrows in any IDEF0 diagram

correspond with the arrows on the parent activity box. Thus the goals for Boundary

IDEFo Syntax rules is a list of triples about Boundary Input, Boundary Output,

Boundary Control, and Boundary Mechanism.

Software Test

The software testing methods for IDEF0 Diagram Translator and IDEF0 Syn-

tax Expert System were performed using three steps: unit testing, integration test-

5-11

CASE PARENT CHILD If-then rules

THIERE IS NO If there is no information about
PARENT PARENT BOX DON'T CARE the parent activity box

INFORMATION. then can not check.

If there is at least one
blank boundary arrow LABEL

DON'T CARE then there is a LABEL

]LL- !error.

If there is at least one
hblank LABEL on the parent

DOn A activity box then parent
-- _ _ Input arrow has no LABEL.

If the number of Input
arrows of the parent box

BOUNDARY is greater than or less
than that of the boundary

INPUT I L. J I Input arrows then there is

MECIIANISM) an error of the number of
parent Input and boundary
Input arrows.

If there is no Input arrow
------ tof parent activity box and

boundary arrow then
boundary Input is correct.

If LABELs of Input arrows
of the parent activity box
and boundary Input arrows
are all matched then
boundary Input is correct.

If there is at least one
LABEL which is mismatched
then there is an error of
mismatched LABEL.

If the number of boundary
Input arrows is greater

DON'T CARE than 5 then the number of
In _ those should be reduced.

Figure 5.6. Boundary IDEF0 Syntax

5-12

CASE PARENT CHILD If-then rules

D ' AIf there is at least one
h blank boundary arrow LABEL

Dthen there is a LABEL
In

error.

If there is at least one
Dblank LABEL on the parent, DON'T CARE

activity box then parent
Output arrow has no LABEL.

If there is no boundary
DON'T CAE -Output arrow then there

DON'TARY Cmust be at least a boundary
130UNDARY Output arrow.

OUTPUT If there is no Output arrow
(C ---- Dthen there must be at least(CONTROL) DON'T CARE

an Output arrow on parent
activity box.

If the number of Output
arrows of the parent box
is greater than or less

, , than that of the boundary
Output arrows then there isE .'an error of the number of
parent Output and boundary
Output arrows.

If LABELs of Input arrows
of the parent activity box
and boundary Input arrows
are all matched then
boundary Input is correct.

If there is at least one
LABEL which is mismatched
then there is an error of
mismatched LABEL.

If the number of boundary

Output arrows is greaterDON'T CARE I '
D than 5 then the number of

nL-L ' those should be reduced.

Figure 5.7. Boundary IDEFo Syntax(Continued)

5-13

ing, and validation testing (12:502). These methods use the white box testing meth-

ods discussed in Chapter IV.

The Unit testing step focuses on each module individually to be sure that it

functions properly as a unit (12:502). The test considerations are module interface,

data structure, boundary conditions, basis path through the control structure, and

error handling paths (12:503). Unit test considerations are applied to IDT and ISES

individually. For IDEF0 Diagram Translator, IDEFo diagram is prepared. Predicate

data files are also prepared for IDEF0 Syntax Expert System.

The Integration testing step is applied to take unit-tested modules and con-

struct a complete program structure to ensure that the interfaces between modules

are correct (12:507). Bottom-up integration is used because IDEF0 Diagram Trans-

lator and IDEF0 Syntax Expert System are lower-level than SAtool. First, testing

for IDEF0 Diagram Translator was performed and then the whole system of SAtool

was examined. Also testing of IDEF0 Syntax Expert System was applied separated

because ISES is separated with IDT and SAtool.

The Validation testing step is performed to provide final assurance that the

software meets the mentioned requirements. This focuses on the Are we building the

right product? (12:499). This step was used to examine whether the IDT produced

predicate data forms correctly and the ISES checked completely IDEF0 syntax.

Suminary

This chapter described the low level design and implementation of IDEF0 Di-

agram Translator and IDEF0 Syntax Expert System based on the requirements of

the tool. The translation rules and the components of ISES are also represented.

Finally, testing methodology applied in this investigation are discussed.

5-14

VI. Conclusions and Recommendations

Itroduction

The objective of this thesis investigation was to design and implement an

application of expert system for checking IDEF0 syntax of IDEFo diagrams as derived

from the SAtool. This chapter presents the conclusions and directions for possible

future research.

Conclusions

This investigation is classified into two major categories: IDEF0 Diagram

Translator and IDEFo Syntax Expert System. The work for the IDEF0 Diagram

Translator was performed in two phases. Duiring the first phase, the formulation

of graphical features of the IDEFo diagram was derived through predicate calculus

representation, since the predicate calculus is a convenient representation for facts

and rules of inference. The formal definition of the IDEFo graphical features does

not have completeness but consistency because the IDEF0 graphical language con-

tains semantic meanings. The second phase included the development of the IDEF0

Diagram Translator which translates the IDEFo graphical features in the IDEF0

diagram into a set of predicate data forms. The predicate data forms focus on an ac-

tivity box and associated arrows and on the boundary arrows in any IDEFo diagram.

Predicate data forms become the data base (working memory) for the IDEFo Syntax

Expert System. The IDEFo Syntax Expert System consists of the inference engine,

the knowledge base, the data base, and the user interface. The inference engine

applies the knowledge to the solution of a specific domain. To check IDEFo syn-

tax in any IDEFo diagram, the backward chaining control strategy is useful because

there are many more facts than final goals. The knowledge base was identified with

emphasis on the activity box and on the boundary arrows in any IDEF0 diagram.

The knowledge base structure is easy to extend to new IDEFo syntax rules indepen-

6-1

dently of other rules and to change independently of other rules. Each segment of

the knowledge base defines a small and relatively independent piece of knowledge.

Recommendations

Based on the results of this study and the observations made during it, this sec-

tion presents some recommendations for future research which could lead to enhance

the capability of the ISES.

Activity Currently, the tool can check the IDEFo syntax of only a single ac-

tivity box and associated arrows in any IDEF0 diagrams. The relationship among

activity boxes and arrows in composite IDEFo diagrams could be defined to enhance-

ments of the ISES's capability. For example,

" The name of an activity box should not be the same as that of other activity

boxes in any IDEF0 diagrams.

" The number of an activity box should not be the same as that of other activity

boxes in any IDEFo diagram.

" The line label on an activity box should not be the same as that on other

activity boxes in any IDEF0 diagram.

Boundary Since the ISES can check syntax of the boundary arrows except the

tunnel arrow, add the IDEFo syntax rules about the tunnel arrow. This issue implies

IDEF0 syntax check of the multilevel IDEF0 diagrams.

Integrate the translation process with the syntax checking process to be more

user friendly. This issue needs to address how the C language should interface with

Quintus Prolog or some other prolog.

Apply the structure of the knowledge-based IDEF0 syntax system to incor-

porate the design knowledge of a specific software application. Since the design

knowledge provides a means of abstracting software design into resuable modules.

6-2

the design knowledge using the IDEFo methodology can be reused for a similar soft-

ware design. The knowledge-based IDEFo syntax system uses IDEFo model segments

to represent design modules which are combined and refined to generate an entire

IDEF0 model.

Summary

This chapter presented the conclusions derived from the design and imple-

mentation of an application of expert system for checking IDEFo syntax of IDEF0

diagrams drawn from the SAtool and the recommendations for future research.

6-3

Appendix A. Requirements Analysis Diagrams

This appendix contains the requirements analysis IDEF0 diagrams for the

IDEFo Diagram Translator. These diagrams are not exactly one-to-one correspon-

dence with the implementation modules, but are close.

A-1

List of Figures

Figure Page

A. 1. Provide SAtool (Node A-0) A-3

A.2. Provide SAtool (Node AO) A-4

A.3. Translate Diagram (Node A2) A-5

A.4. Translate Activity (Node A21). A-6

A.5. Save Box Arrow Info (Node A213) A-7

A.6. Get Arrow Info (Node A2132) A-8

A.7. Get Inputs (Node A21321) A-9

A.8. Get Outputs (Node A21322) A-10

A.9. Get Controls (Node A21323) A-11

A.lO.Translate Boundary (Node A22). A-12

A.ll.Save Boundary Info (Node A223) A- 13

A. 12.Save Diagram (Node A23) A- 14

A. 13.Store Predicates (Node A232). A- 15

A.14.Traverse Boxes (Node A2322). A- 16

A-2

A-0 Provide SAtool

Abstract: Provide SAtool provides a means of mechanism by
which the user is able to draw Activity IDEFO Diagrams.
From these diagrams, Facing Page Text and Data Dictionaries
for Activities and Data and Predicate Data forms are
generated.

AUTHOR: Capt Kim, intaek IDATE:84/10/901READER I

PROJECT: SAtool JREV: 1.1 DATE

User ~ ~ ~ InefcDrnlto ueiiios

Provide Facing Page Text
User Files 1SAtool JIEFO e ic t s;Diagram-fo

Predicatesi

NODE: ITLE: Provide SAtool NUMBER: C-I
A-0 I

Figure A.I. Provide SAtool (Node A-0)

A-3

AO Provide SAtool

Abstract: Provide SAtool provides the user a mechanism by
which the user is able to draw Activity IDEFO Diagrams.
From these diagrams, Facing Page Text, Data Dictionaries for
Activities and Data, and Predicate Data forms are generated.

Al Provide SA Editor provides a means of drawing

Activity IDEFO Diagrams. From these diagrams, Facing Page
Text and Data Dictionaries for Activities and Data are
generated.

A2 Translate Diagram provides a means of translating
IDEFO Diagrams into Predicate Data Forms.

AUTHOR: Capt Kim, Intaek DATE:30/01/90 READER I

PROJECT: SAtool REV: 1.1 DATE I

f1e C2
ser Interface Translation Rules

DO Definitions
ProvideFain Pae Text 01

User files -SA Editor F C R Pa fe T 02
II 1 F Diagram 04

te Diagra Predicates

NODE: ITLE: Provide SAtool NLHBER: C-2
AO

Figure A.2. Provide SAtool (Node AG)

A-4

A2 Translate Diagram

Abstract: Translate Diagram provides the user a means of
translating IDEFO Diagrams into Predicate Data Forms.

A21 Translate Activity provides a means of translating
an activity box in any IDEFO Diagrams into a set of predicate
data forms through the translation rules of the activity box.

A22 Translate Boundary provides a means of translating
the boundary arrows in any IDEFO Diagrams into Predicate data
forms through the translation rules of the boundary arrows.

A23 Save Diagram provides a means of translating the
IDEFO Diagram into a set of the predicate data forms and
saving it into a file which user specifies interactively.

AUTHOR: Intaek kim DATE:38/01/90 READER

PROJECT: SAtool REV: I.8 DATE

Translation Rules I C2e

'User Interface ___________

e_ _ a Ta l [D Predicates

I o D•

IIActivity Predicates
e Boundary Predicates

[]Diagram Predicates

NODE: ITLE: Translate Diagram NUBER: C-3

Figure A.3. Translate Diagram (Node A2)

A-5

A21 Translate Activity

Abstract: Translate Activity provides a means of translating
an activity box in any IDEFO Diagrams into a set of predicate
data forms through the translation rules of the activity box.

A211 'find clicked box' module provides a means of
finding an activity box which user specifies using the mouse
in the IDEFO diagram.

A212 'save header info' module provides a means of
saving the head information of the IDEFO diagram which is
needed to check Boundary IDEFO Syntax.

A213 'save box arrow info' module provides a means of
grasping the information of the activity box and the arrows
which are attatched on the activity box.

AUTHOR: Intaek Kim DATE:38/81/9g READER

PROJECT: SAtool REV: 1. JDATE

User Interface C2 C2
Translation Rules

IDEF8 Dia ram clicked bxstructur -e

1
box Ib°av

infox r nf

header info '

info

box arrow info

[Activity Predicates

NODE: ITLE: Translate Activity NINBER: C-4
A21 I

Figure A.4. Translate Activity (Node A21)

A-6

A213 save box arrow info

Abstract: 'save box arrow info' module provides a means of
grasping the information of the activity box and the arrows
which are attatched on the activity box.

A2131 'get box info' module provides a means of
holding and saving the activity box name and the number into
a file in forms of predicate using the translation rules.

A2132 'get arrow info' module provides the information
of the arrows which are touched an activity box in forms of
predicate.

AUTHOR: Intaek Kim JDATE: 30/91/90 IREADER III

PROJECT: SAtool IREV: 1.8 DATE I I I

box structure C 2 R2I Translation Rules

IDEFO Diagram get box Info box arrow Info

arr.
Info arro nfo

2

NODE: ITLE: save box arro info Nt)BER: C 5
A213

Figure A.5. Save Box Arrow Info (Node A213)

A-7

A2132 get arrow info

Abstract: 'get arrow info' module provides the information
of the arrows which are touched an activity box in forms of
predicate.

A21321 'get inputs' module provides a means of
grasping the predicate data forms of all kind of input arrows
which are touched on an activity box.

A21322 'get outputs' module provides a means of
grasping the predicate data forms of all kind of output arrows
which are touched on an activity box.

A21323 'get controls' module provides a means of
grasping the predicate data forms of all kind of control arrows
which are touched on an activity box.

A21324 'get mechanisms' module provides a means of
grasping the predicate data forms of all kind of mechanism arrows
which are touched on an activity box.

AUTHOR: Intaek Kim DATE:88/84/98 READER I I

PROJECT: SAtool REV:i.e DATE

box srcueC C2
box strcturel I 1Translation Rules

IDEF8 Diagrm get inputs1 Inpus a 01

get

ou
p t

outputs
2 out t ros

nr

goto

mechanism

NODE: ITLE: get arrow info NIJBER: C-6
A2132

Figure A.6. Get Arrow Info (Node A2132)

A-8

A21321 get inputs

Abstract: 'get inputs' module provides a means of grasping
the predicate data forms of all kind of input arrows which
are touched on an activity box.

A213211 'get single head input' module provides a means
grasping the single headed input arrows' information translated
in the predicate data forms which are touched on an activity
box.

A213212 'get double head input' module provides a means of
grasping the predicate data forms of the double headed input arrows
which are touched on an activity box.

A213213 'get doublehead in/w slash' module provides a
means of grasping the predicate data forms of the double headed
input arrows with the slash which are touched on an activity box.

AUTHOR: Intaek Kim DATE:38/81/981READER I

PROJECT: SAtool IREV: 1.8 DATE I

box structurelC1 C2
I T Tanslation Rules

1OEF8 Diagram get sin Input labelsInus
-. -gle head "01

II ,nput I

get dou Itnput labels
...l headl

input 2

blehead i

n/w slash Input labels

NODE: ITLE: get inputs L4BER: C-7
A21321 I

Figure A.7. Get Inputs (Node A21321)

A-9

A21322 get outputs

Abstract: 'get outputs' module provides a means of
grasping the predicate data forms of all kind of output arrows
which are touched on an activity box.

A213221 'get single head output' module provides a means
of grasping the predicate data forms of the output arrows
with a single head which are touched on an activity box.

A213222 'get double head out/con' module provides a means
of grasping the predicate data forms of the output arrows
with the double head one for the output and the other for the
control arrow of another box.

A213223 'get double head out/in' module provides a means
of grasping the predicate data forms of the output arrows
with the double head one for the output and the other for the
input arrow of another box.

A213224 'get double head output' module provides a means
of grasping the predicate data forms of the output arrow
which leaves the right side of an activity box and there is a
double head.

AUTHOR: Intaek Kim DATE:30/81/90 READER

PROJECT: SAtool REV: 1.8 DATE

box structurec C 1 CI2
bo Tanslation Rules

get sin output labels outputs

gle head 01

get dou uoutput labelsble head .
'Out/con21 t ou ,

otep du output labels
o°ut/in 3

bls head
ouptoutput labels

4

m IDEFO Diagram

NODE: TITLE: get outputs]NLBER: C-8
A21322 I

Figure A.S. Get Outputs (Node A21322)

A-10

A21323 get controls

Abstract: 'get controls' module provides a means of
grasping the predicate data forms of all kind of control
arrows which are touched on an activity box.

A213231 'get single head control' module provides
a means of grzsping the predicate data forms of the control
line which cories to the upper side of an activity box and
there is a single headed arrow.

A213232 'get double head control' module provides
a means of grasping the predicate data forms of the control
line which comes to the upper side of an activity box and
there is a double headed arrow.

A213233 'get double head con/slash' module provides
a means of grasping the predicate data forms of the control
line which comes to the upper side of an activity box and
there is a double headed arrow with a slash.

AUTHOR: Intaek Kim DATE:30/01/901READER

PROJECT: SAtool REV:I18 DATE

box structurelci C2
Translation Rules

am_ get sin control labels contrr's
IDEFODiag gle head 01
Ii controlI

g ~~ ~get dou coto aes1 .

lel head

con/slash control labels

NODE: ITLE: get controls NUMBER: C-9
A21323 m

Figure A.9. Get Controls (Node A21323)

A-11

A22 Translate Boundary

Abstract: Translate Boundary provides a means of translating
the boundary arrows in any IDEFO Diagrams into Predicate data
forms through the translation rules of the boundary arrows.

A221 'get parent box' module provides a means of
grasping the predicates for the parent activity box and
producing the parent information.

A222 'save null boundary' module provides a means of
grasping the predicates if there is no the boundary arrow in
according with the input, output, control, or mechanism of
the IDEFO diagram.

A223 'save boundary info' module provides a means of
grasping the predicates of the boundary arrows if there is at
least one boundary arrow in the IDEFO diagram.

AUTHOR: Intaek Kim DATE:30/01/98 READER I
PROJECT: SAtool REV:1.8 DATE I

User Interface 2 Translation Rules

Boundary Predicates

IDEF8 Dia ram~ get par f bbouand r infoi

Nave nu null boundary:1 b ou n]da

ry 2

A2a2

sav bo

bundary in
fo boundary info

3

NODE: ITLE: Translate Boundary NUMBER: C-10

Figure A.10. Translate Boundary (Node A22)

A-12

A223 save boundary info

Abstract: 'save boundary info' module provides a means of
grasping the predicates of the boundary arrows if there is at
least one boundary arrow in the IDEFO diagram.

A2231 'search boundary lines' module provides a means
of searching for the boundary lines for the IDEFO diagram and
producing a linked list of line structure as the output.

A2232 'get boundary line labels' module provides a
means of grasping the line labels of the boundary lines in the
IDEFO diagram.

AUTHOR: Intaek Kim 0DATE:38/1/90READER I

PROJECT: SAtool IREV:1.0 IDATE I I I

C e C2
parent info Translation Rules

IDEFO Diagram search
11 -boundary

lines

boundary lines
get bou boundary info
ndary lin
e labels 01

2

NODE: ITLE: save boundary info NUMBER: C-I1
A223

Figure A.11. Save Boundary Info (Node A223)

A-13

A23 Save Diagram

Abstract: Save Diagram provides a means of translating the
IDEFO Diagram into a set of the predicate data forms and saving
it into a file which user specifies interactively.

A231 The function of 'get file name' module is to get
a file name from the user in order to save the predicate data
forms for the IDEFO diagram into it.

A232 The function of 'store predicates' module is to
save the predicates for the IDEFO diagram into a file which the
user specifies.

AUTHOR: Intaek Kim IDATE:38/ /0198
E I I I

PROJECT: SAtool IREV: 1.8 [DATE

C2 Translation Rules C1
User Interface

get fil i
e name fileI name

sore' P

1 IOL'q Diagram redicatesi Diagram Predicates 0
11 i 2 10

NODE: ITLE: Save Diagram NUMBER: C-12
A23 I

Figure A.12. Save Diagram (Node A23)

A-14

A232 store predicates

Abstract: The function of 'store predicates' module is to
save the predicates for the IDEFO diagram into a file which the
user specifies.

A2321 'save header info' has the same function of module
A212. See A212 description.

A2322 'traverse boxes' module function is to traversing
every boxes in the IDEFO diagram.

AUTHOR: Intaek Kim DATE:68/05/90 READER

PROJECT: SAtool]REV: 1.B JDATE I I

file name Cl Cl...Translation Rules

Diagram Pedicates

IDEFODiagram a h

II der Info header info

I ravers bxsif

o• boxes b~s|~

2

[]User Interface

NODE: ITLE: store predicates 7 NMBER: C-13
A232 I

Figure A.13. Store Predicates (Node A232)

A-15

A2322 traverse boxes

Abstract: 'traverse boxes' module function is to traversing
every boxes in the IDEFO diagram.

A23221 'get a box' module function is to get the
information for an activity box in the IDEFO diagram.

A23222 'save box arrow info' module function is the
same as module A213.

A23223 'get boxes arrows' module function is to gether
the predicates of every activity box and arrow in the IDEFO
diagram.

AUTHOR: Intaek Kim DATE:88/5/g8 READER

PROJECT: SAtool IREV:1.9 DATE I I I

C2 file nae CI1 C3
User Interface - Translation Rules

get a
_DEF8 Dia ram box

Iii
I1 1

box structure

save

info 2

box arroul info

get
boxes boxes info

.Jarrows 0

NODE: ITLE: traverse boxes NUMBER: C-14
A2322 I

Figure A.14. Traverse Boxes (Node A2322)

A-16

Appendix B. Structured Chart

This appendix contains the detailed design structure charts for the IDEF0

Diagram Translator implementation. The detailed design is concerned with the

requirements analysis diagrams in appendix A. There is a close, but not exactly

one-to-one, correspondence between the design modules and the implementation

modules.

B-1

Li

List of Figures

Figure Page

B.1. Provide SAtool(Module 1.0). B-3

B.2. Save Box Arrow Info(Module 1.2.1.3) B-4

B.3. Get Outputs(Module 1.2.1.3.2.2) B-5

B.4. Get Controls(Module 1.2.1.3.2.3) B-5

B.5. Translate Boundary(Module 1.2.2) B-6

B.6. Save Diagram(Module 1.2.3). B-7

B- 2

1.2.1.1

Figuree B T.rovidae Sto(oue10

SA Edtor Dagra

save
box arrow
info

1.2.1.3

get get

box info arrow info
1.2.1.3.1 1.2.1.3.2

get get get get

inputs outputs controls mechanisms
1.2.1.3.2.1 1.2.1.3.2.2 1.2.1.3.2.3 1.2.1.3.2.4

get single get double get double
bead

head input head input in/w slash

1.2.1.3.2.1.1 1.2.1.3.2.1.2 1.2.1.3.2.1.3

Figure B.2. Save Box Arrow Info(Module 1.2.1.3)

B-4

get

outputs

1.2.1.3.2.2

get single get double get double get double

head output head out/con head out/in head output

1.2.1.3.2.2.1 1.2.1.3.2.2.2 1.2.1.3.2.2.3 1.2.1.3.2.2.4

Figure B.3. Get Outputs(Module 1.2.1.3.2.2)

get
controls

1.2.1.3.2.3

get single get double get double
head control head control head con/slash

1.2.1.3.2.3.1 1.2.1.3.2.3.2 1.2.1.3.2.3.3

Figure B.4. Get Controls(Module 1.2.1.3.2.3)

B-5

Translate
Boundary

1.2.2

get save sav e
parent null boundary
box boundary info

1.2.2.11...1223

search get
boundary boundary
linefs line labels

1.2.2.3.1 1.2.2.3.2

Figure B.5. Translate Boundary(Module 1.2.2)

B-6

Save
Diagram

1.2.3

get store

file name predicates

1.2.3.1 1.2.3.2

save traverse

header info boxes

1.2.3.2.1 1.2.3.2.2

get save box boxes

a box arrow info arrows

1.2.3.2.2.1 1,2.3.2.2.2 1.2.3.2.2.3

Figure B.6. Save Diagran-i(Module 1.2.3)

B-7

Appendix C. Data Structures of SAtool

Introduction

The purpose of this appendix is to discuss of the Data Structures of SAtool

developed by Steven E. Johnson (9). A discussion of the data structures of the

SAtool is needed because this thesis work should interface with the SAtool and use

the IDEF0 diagrams and files generated by the SAtool. The SAtool allows users to

interactively create and edit IDEFo diagrams and to automatically produce the data

dictionary information.

Da ta Slructurc

Five primary data structures were designed to hold all the graphics and data

dictionary information: the box structure, the line structure, the squiggle line struc-

iire. the header structure, and the footnote structure (9:4-11 - 4-14).

The box structure contains the information which is necessary to locate, name.

and enumerate activity boxes (9:4-11). The activity boxes in the IDEF0 diagram are

hooked by the linked list. The box structure uses two C pointers one for the next box

stitucture and the other for pointing an activity data dictionary structure (9:4-11).

The line structure consists of the fields which are necessary to lacate, label,

draw the liles, enumerate the lines to identify them, store the ICOM labels, and store

the TO/FROM ALL labels (9:4-11 -4-12). The line structure uses two numbers to

identify the type of each end of the line (ie. arrowhead, tunnel, (lot, turn right, or

branch left. etc.) and uses C pointers to store the lines in binary trees with the root

nodes (9:4-12). Figure C.1 shows four groups of the lines and the corresponding

linked list structure is presented in Figure C.2 (9:4-12 - 4:13). The tree arrangement

in Figure A.2 maps to how the line segments actually connect to one another and

C pointer supports the simple recursive functions used to traverse the binary tre(s

C-I

13 Demo 2 1 6

1 2

Figure C.1. Example Group of lines (9:4-12)

(9:4-12). The line structure uses another C pointer to point to a data divtionary

information for a data element.

The squiggle line structure contains the information which is necessary to locate

and to identify each squiggle line in the IDEF0 diagram (9:4-13). The squiggle line

structure uses a C pointer to store the squiggle lines for a particular IDEF0 diagram

in a single linked list (9:4-13 - 4-14).

The header structure consists of seven fields which are needed to draw, locate.

and classify AUTHOR, DATE, PROJECT, REV, NODE, TITLE, and NUMBER

of an IDEF 0 diagram(9:4-14 - 4-15). A single C pointer is used to save the header

information since each IDEF0 diagram only has one header (9:4-14).

Finally, the footnote structure contains the information which is needed to

draw, locate and identify a matched pair of footnote labels (9:4-14). A C pointer is

defined to point another footnote structure since the footnote structures for a IDEF0

diagram are stored in a single linked list (9:4-14).

C-2

Figure C.2. The Linked List for Lines (9:4-13)

Sum mary

In this appendix, the data structure of the SAtool which is necessary to perform

this thesis investigation was addressed from Johnson's effort. This information was

used throughout this thesis effort.

C-3

Appendix D. User's Manual

User's Manual introduces the basics of the ISES. The purpose of this man-

ual provides a broad understanding of the ISES's operation, then provides a more

detailed example for learning to use the ISES.

D-1

Table of Contents

Page

Appendix D. User's Manual Di

Table of Contents D-2

List of Figures. D-3

Introduction D-4

The Mouse. D-5

How to draw lines well. D-5

Getting Started D-6

Examples D-10

D-2

List of Figures

Figure Page

D.1 Test IDEF0 Diagram. D-11

D-3

Introduction

The IDEF0 Syntax Expert System(ISES) is an interactive syntax check system.

It provides a means for checking IDEF0 syntax in any IDEF0 diagrams drawn by

SAtool and, producing error messages, error recovery, and editing suggestions. ISES

allows the user to select a menu for drawing an IDEF0 diagram and checking IDEF0

syntax. The functions of the main menus include:

" RECALL DGM- read in a previously saved IDEFo diagram.

" EDIT DGM- edit an IDEF0 diagram according to its attribute menus.

" EDIT DD - edit a data dictionary.

" EDIT FPT- edit a facing page text.

" MISC FUNC - save a diagram, change directory, exit SAtool, etc.

* SAVE DGM- save a graphics information and a data dictionary information.

* CHECK SYNTAX - check IDEF0 syntax.

The first six menus are for drawing IDEFO diagrams, generating Data Dictionary

information, and Facing Page Text and the last one is for ISES to check IDEF0

syntax. A detailed guide for drawing IDEFo diagram is available in the user's man-

ual of Johnson's thesis (9). This User's Manual focuses on the CHECK SYNTAX

part. ISES runs on Sun3TM and Sun4TM workstations using the SunOSTI 1 and the

SunViewTM window-based environment. This manual explains how CHECK SYN-

TAX can be used to check IDEFo syntax. Some previous familiarity with IDEF0

syntax and SAtool is required. Though not necessary, some familiarity with SunOS

and SunView is helpful. Users should be thoroughly familiar with the concepts

presented in this manual before using ISES.

ISunOSTM is a trademark of Sun Microsystems, Inc.

D-4

The Mouse

To move the cursor, place the mouse on its pad and move it in the desired

direction. During the execution of SAtool, User is required to click the mouse button.

All mouse button inputs should be clicked on the proper location in IDEF0 diagram,

otherwise, the mouse button inputs are ignored.

" Right Button

The right button is used almost to abort operation of menu selected.

" Middle Button

The middle button is used to exit SAtool (see Exit SAtool).

" Left Button

The left mouse button is used to select one of menus and to start a menu

operation.

How to draw lines well

Almost of the unnoticed errors are produced in the field of drawing lines. They

provide a menas of generating unsuitable predicate data forms.

1. Boundary lines

e All boundary lines should have their ICOM labels.

e All arrows of Inputs, Mechanisms, and Controls must be touched on an%

box. The segment of lines inside an activity box is truncated automati-

cally.

* All output lines should be begun inside an activity box.

2. Inter activity box lines

Every starting and ending point of the line segments should be begun and

ended inside an activity box excepting the branch, join lines, and TO/FROM

lines.

D-5

Getting Started

Set your UNIX path variable to include the ISES executable directory.

1. Enter "suntools"

enter SunView and SunWindow environment.

2. Enter "SAtool"

enter the IDEF0 Diagram Translator environment.

3. The Main Menu

Menus are displayed as the oval forms on the screen.

,Move the cursor to one the following choices to select:

* RECALL DGM

" EDIT DGM

* EDIT DD

" EDIT FPT

" MISC FUNC

" SAVE DGM

* CHECK SYNTAX

4. IDEFo diagram

By selecting one of the first five menus, The user is able to draw a new IDEF0

diagram or update the previous IDEF0 diagram.

5. IDEFo Syntax

After drawing an IDEF0 diagram, select CHECK SYNTAX oval by clicking the

left mouse button on it. Now, three attribute submenus are displayed as the

rectangular forms. Move the cursor to on, of the following choices to select:

e Activity

D-6

" Boundary

" Save(.pro)

IDEF0 syntax consists of Activity and Boundary IDEFo syntax.

6. Activity IDEFo syntax

After clicking the left button on Activity rectangular box of the submenus,

(a) Move the cursor inside a box to be checked and click the left mouse button

(Right - ABORT).

(b) Enter the Prolog environment using another window.

7. Boundary IDEFo Syntax

NOTE: User must have the predicate file of the parent IDEFo diagram.

(a) After clicking the left button on Boundary rectangular box of menus,

(b) move the cursor inside the input window and enter the file name with the

parent activity box information (Right-ABORT).

(c) Enter the Prolog environment using another window.

8. Saving the predicate file

(a) After clicking the left mouse button on "save(.pro)" rectangular box of

menus,

(b) move the cursor inside the input window, and then enter the file name

for the current IDEF0 diagram. This file is a set of predicate data forms

translated from the graphical information in the IDEF 0 diagram. It is

used to check Boundary IDEFo syntax. The extension of the predicate

file is a .pro.

9. Prolog Environment

Enter "prolog". This invokes the Prolog interpreter.

D-7

(a) Enter "['ISES']. "- consult ISES.

Now, the following message is showed:

l* *l

/* WELCOME TO IDEFO SYNTAX EXPERT SYSTEMS

/* I. Type start. to begin a new session. */
/* II. Answer all questions using lower case and ending with*/
** a period. */
l* "

/* III. Type halt. to exit Prolog session. */

(b) Enter "start." to begin checking IDEFo syntax of a clicked box in the

current IDEF0 diagram. Then, the message:

Question: Do you want verbose operation(y./n.)? is displayed. Enter "y.'"

or "n.". In sace of "y. ", the list of rules fired are shown and in case of

"n.", only the IDEF0 syntax messages are displayed. (See Examples).

(c) After then, the following message is shown on the screen:

Question: Do you wish to check ACTIVITY BOX, BOUNDARY ARROWS

or to have HELP MESSAGES ?

To check ACTIVITY BOX -? Enter a.

To check BOUNDARY ARROWS -> Enter b.

To have HELP MESSAGES -> Enter h.

Choice :
If checking Activity IDEF$_{O}$ syntax, enter "a.",
checking Boundary IDEF$_{O}$ syntax, enter "b.", or
wishing Help Message, enter "h.".

D-8

10. IDEFo Syntax Message

According to selection above description, the resulting messages of the IDEF0

syntax checking procedure are displayed (see Examples).

11. Trace

The message, Question: Do you wish to see how this answer was arrived at

(y./n.) ? is followed by the resulting messages. Enter "y." or "n. "1. "y." means

that the trace regarding the IDEF0 syntax message derived is displayed and

"n." skips (see Examples).

12. Save Working Memory

Then, the message, Question: Do you wish to save the current working memory

in a file (y./n.)? is displayed. Enter "y." or "n. ". In the case of "y. ", the

current working memory is saved in a file which is specified by the user and of

"n. ", the current working memory is erased automatically.

13. Exit Prolog Environment

By entering 'halt." or "ctrl c", prolog session is ended.

14. Exit SAtool

To exit SAtool, click the left mouse button on the "MISC FUNC" oval of the

main menus. And then click the left mouse button on the "QUIT" under the

"MISC FUNC" oval. Finally, click the middle button of the mouse.

D-9

Examples

This section presents the actual demonstrations for checking process of the

correct IDEFo diagram, however, the checking process about the IDEF0 diagram

with errors is the same as the correct case.

D-10

AUTHOR: Iritaek Kim IDATE:13/02/901READER I
PROJECT: testc82 IREV: 1.-8 [DATE I

Mechanisml

NODE: ITLE: Make ExampleNUBR C-

AUTHOR: Intaek Kim IDATE:89/81/901READ)ER I

PROJECT: testc021 IREV: 1.8 JDATE I

coni con2

rl

C2

box 1

11 , Vin

box2 ot

12 n2 i32ot/n 01

out2 02n

NODE: ITLE: Make Example NUM4BER: C-2
Al I

F igure D).I. Test IDFFo Diagram

D1-I

ares> prolog

Quintus Prolog Release 2.4.2 (Sun-4, SunOS 4.0)
Copyright (C) 1988, Quintus Computer Systems, Inc. All rights reserved.
1310 Villa Street, Mountain View, California (415) 965-7700

I ?- ['ISES').
[consulting /usr2/engikim/SAtoolExpert/ISES...]

l* *

/* WELCOME TO IDEFO SYNTAX EXPERT SYSTEMS
l* *

/* I. Type start. to begin a new session.
l* */

/* II. Answer all questions using lower case, ending with */
l* a period. **
l* *

/* III. Type halt. to exit prolog session.
l* *

[ISES consulted 1.36T sec 19,008 bytes]

yes
I ?- start.
Question: Do you want verbose operation(y./n.)? n.

Question: Do you wish to check ACTIVITY BOX, BOUNDARY ARROWS
or to have HELP MESSAGES ?

To check ACTIVITY BOX -> Enter a.
To check BOUNDARY ARROWS -> Enter b.
To have HELP MESSAGE -> Enter h.

Choice a.

/*************** IDEFO Syntax Messages ***************/

Name --> CORRECT: Activity Name is OK.

Input --> CORRECT: Input is OK.

Output --> CORRECT: Output is OK.

D-12

Control -- > CORRECT: Control is OK.

Mechanism -- > CORRECT: Mechanism is OK.

Number --) CORRECT: Activity number is OK.
This activity must be the top most level box.

Question: Do you wish to see how this answer

was arrived at(y./n.)? n.

/****************** I WARNING *************************

/* After this session, all working memory elements will */

/* be erased except for elements being protected by
/* keep statements in the knowledge base. */

Question: Do you wish to save the current working memory

in a file(y./n.)? n.

)- la

/* */

WELCOME TO IDEFO SYNTAX EXPERT SYSTEMS */

/* I. Type start. to begin a new session.

/* II. Answer all questions using lower case, ending with */
a period.

/* */

/* III. Type halt. to exit prolog session. */

yes

I ?- start.
Question: Do you want verbose operation(y./n.)? y.

Question: Do you wish to check ACTIVITY BOX, BOUNDARY ARROWS
or to have HELP MESSAGES ?

To check ACTIVITY BOX -> Enter a.

To check BOUNDARY ARROWS -> Enter b.

To have HELP MESSAGE -> Enter h.

Choice : a.

/*************** IDEFO Syntax Messages ***************/

Trying rulel:: [Name, , --> ERROR: No Activity Name.
Each box must have an activity name]

Trying rule2:: [Name, , -- > CORRECT: Activity Name is OK]

Proved rule2:: [Name, , -- > CORRECT: Activity Name is OK]

Name --> CORRECT: Activity Name is OK.

Trying rule3:: [Input, , --> CORRECT: No Input Arrows, however,
Input is OK]

Trying rule4:: [Input, , --> ERROR: No Input Label

Each Input arrow must have an input label]
Trying ruleS:: [Input, , --> RECOMMEND:

You would better reduce the number of Input arrows
from 0 to 5]

Trying rule6:: [Input, , -- > CORRECT: Input is OK]

Proved rule6:: [Input, , -- > CORRECT: Input is OK]

D-14

Input -- > CORRECT: Input is OK.

Trying rule7:: [Output, , --> ERROR: You should have at least
one output arrow]

Trying rule8:: [Output, , --> ERROR: No Output Label.
Each Output Arrow should have an output Label]

Trying rule9:: [Output, , --> RECOMMEND:

You would better reduce the number of Output arrows
from 1 to 5]

Trying rulelO:: [Output, , -- > CORRECT: Output is OK]

Proved rule10:; rOutput, , -- > CRRECT: Output is OK]

Output --> CORRECT: Output is OK.

Trying ruleli:: [Control, , --> ERROR: You should have at least

one control arrow]
Trying rulel2:: [Control, , --> ERROR: No Control Label.

Each Control Arrow should have a control Label]
Trying rulel3:: [Control, , --> RECOMMEND:

You would better reduce the number of Control arrows
from 1 to 5]

Trying rulel4:: [Control, , -- > CORRECT: Control is OK]
Proved rulel4:: [Control, , -- > CORRECT: Control is OK]

Control --> CORRECT: Control is OK.
Trying rulel5:: [Mechanism, ,--> ERROR: No Mechanism Label.

Each Mechanism Arrow should have a mechanism Label]

Trying rulel6:: [Mechanism, ,--> CORRECT: No Mechanism Arrows, however,

Mechanism is OK]
Trying rulel7:: [Mechanism, ,--> RECOMMEND:

You would better reduce the number of Mechanism arrows
from 0 to 51

Trying rulel8:: [Mechanism, ,--> CORRECT: Mechanism is OK]

Proved rule18:: [Mechanism, ,--> CORRECT: Mechanism is OK]

Mechanism --> CORRECT: Mechanism is OK.

Trying rulel9:: [Number, , --> CORRECT: Activity number is OK.

This activity must be the top most level box]
Proved rulel9:: [Number, , --> CORRECT: Activity number is OK.

This activity must be the top most level box]

Number -- > CORRECT: Activity number is OK.

This activity must be the top most level box.

D-15

Question: Do you wish to see how this answer
was arrived at(y./n.)? y.

GOAL:: [Name, , -- > CORRECT: Activity Name is OK]

GOAL:: [Input, , ->CORRECT: Input is OKI
GOAL:: [Output, , -- > CORRECT: Output is OK]

GOAL:: [Control, , -- > CORRECT: Control is OK]

GOAL:: [Mechanism, ,--> CORRECT: Mechanism is OK]
GOAL:: [Number, , -- > CORRECT: Activity number is OK.

This activity must be the top most level box]

rulel9:: [Number, , --> CORRECT: Activity number is OK.
This activity must be the top most level box] Was Derived From

[titleis.Make Example] AND
[Make ExamplenumbersO] AND
[0, == n0]

SOLVED:: [O,==,0]
TOLD:: [Make Examplenumber0=is,0
TOLD:: [titleisMake Example]
rulel8:: [Mechanism, a--> CORRECT: Mechanism is OK Was Derived From

e act ivityname,is ,Make Example)
KNOWN:: was.told:: [activityname,is,Make Example]
rulel4:: [Control, , -- > CORRECT: Control is OK] Was Derived From

e[activityname ,is ,Make Example]
KNOWN-.: was[told:: activityname,is,Make Example]
rulelO:: [Output, , -- > CORRECT: Output is OK] Was Derived From

[activityname,is ,Make Example]
KNOWN:: wastold:: [activityname,is,Make Example]
rule6:: [Input, , -- > CORRECT: Input is OK] Was Derived From

[act ivityn OeisMake Example)
KNOWN:: wastold:: [activityname,is,Make Example]
rule2:: [Name, , -- > CORRECT: Activity Name is OK] Was Derived From

[activityname,is,Make Example) AND
[Make Example,\-,N

SOLVED:: [Make Example,\==,]
TOLD:: [activityname,is,Make Example]

/*************!'!WARNING !!I************
/* After this session, all working memory elements will */
/* be erased except for elements being protected by
/* keep statements in the knowledge base.

Question: Do you wish to save the current working memory
in a file(y./n.)? y.

D-16

Please zvipply a filename: 'example.wm'.

D- 17

-*

WELCOME TO IDEFO SYNTAX EXPERT SYSTEMS */
/* */

/* I. Type start. to begin a new session. */

1* II. Answer all questions using lower case, ending with *I
a period.

/* III. Type halt. to exit prolog session.
/* */

yes
?- start.

Question: Do you want verbose operation(y./n.)? n.

Question: Do you wish to check ACTIVITY BOX, BOUNDARY ARROWS
or to have HELP MESSAGES ?

To check ACTIVITY BOX -> Enter a.

To check BOUNDARY ARROWS -> Enter b.
To have HELP MESSAGE -> Enter h.

Choice : b.

/*************** IDEFO Syntax Messages ***************/

Boundary Input -- > CORRECT: Boundary Input is OK.

Boundary Output -- > CORRECT:

Boundary Output is OK.

Boundary Control -- > CORRECT: Boundary

Control is OK.

Boundary Mechanism -- > CORRECT: Boundary

Mechanism is OK.

Question: Do you wish to see how this answer

D-18

was arrived at(y./n.)? n.

/****************** I!WARNING ************************/

/* After this session, all working memory elements will */
/* be erased except for elements being protected by
/* keep statements in the knowledge base. */

** ******** ********** *** ******** ** ****** ********* ** **

Question: Do you wish to save the current working memory
in a file(y./n.)? n.

D-19

1* WELCOME TO IDEFO SYNTAX EXPERT SYSTEMS

/* I. Type start. to begin a new session.

/* II. Answer all questions using lower case, ending with */
a period.

/* III. Type halt. to exit prolog session.

yes

I ?- start.
Question: Do you want verbose operation(y./n.)? y.

Question: Do you wish to check ACTIVITY BOX, BOUNDARY ARROWS
or to have HELP MESSAGES ?

To check ACTIVITY BOX -> Enter a.

To check BOUNDARY ARROWS -> Enter b.

To have HELP MESSAGE -> Enter h.

Choice : b.

/*********** IDEFO Syntax Messages ***************/

Trying rule2:: [Boundary Input, , --> !!! THIS IS A FATAL ERROR !!!j'

Trying rulel:: [boundarysarule,is,stalled]
Trying rule6:: [Boundary Input, , -- > ERROR: No boundary input label]

Trying rule7:: [Boundary Input, ,--> ERROR: Parent Input has no label]

Trying ruleS:: [Boundary Input, ,--> ERROR: The number of Input

arrow(s) of Parent Activity box is greater than that of
Boundary Input arrow(s) -- Must have the same number]

Trying rule9:: [Boundary Input, , --> ERROR: The number of Input

arrow(s) of Parent Activity box is less than that of
Boundary Input arrow(s) -- Must have the same number]

Trying rulelO:: [Boundary Input, , --> RECOMMEND:

You would better reduce the number of arrows to six
below]

Trying rulell:: [Boundary Input, , -- > CORRECT: Boundary Input is OK]

Trying rulel3:: [Boundary Input, , -- > CORRECT: Boundary Input is OK]

D-20

Trying rulel2:: [case-of-boundary-in,is,1]
Trying rulel4:: [Boundary Input, , --> CORRECT: Boundary Input is OK]

Trying rulel2:: [case-of-boundary-in,is,2]
Proved rulel2:: [case-of-boundary.in,is,2]
Proved rulel4:: [Boundary Input, , --> CORRECT: Boundary Input is OK]

Boundary Input --> CORRECT: Boundary Input is OK.

Trying rule3:: [Boundary Output, , -->
There is nothing about Parent activity]
Trying rulel:: [boundarysarule,is,stalled]
Trying rulel9:: [Boundary Output, ,--> ERROR: N: boundary output label]

Trying rule20:: [Boundary Output, , -- > ERROR:

Parent Output has no label]
Trying rule2l:: [Boundary Output, ,--> ERROR: No boundary output arrow.

Should have at least one boundary output arrow]

Trying rule22:: [Boundary Output, , --> ERROR: No parent output arrow.

Should have at least one parent output arrow]
Trying rule23:: [Boundary Output, , --> ERROR: The number of Output

arrow(s) of Parent Activity box is greater than that of
Boundary Output arrow(s) -- Must have the same number]

Trying rule24:: [Boundary Output, , --> ERROR: The number of Output
arrow(s) of Parent Activity box is less than that of
Boundary Output arrow(s) -- Must have the same number]

Trying rule25:: [Boundary Output, , --> RECOMMEND:

You would better reduce the number of arrows to six
below]

Trying rule27:: [Boundary Output, , -- > CORRECT:

Boundary Output is OK]

Trying rule26:: [case-of-boundary.out,is,1]
Trying rule28:: [Boundary Output, , --> CORRECT:

Boundazy Output is OK]
Trying rule26:: [case-of-boundary-out,is,2]
Proved rule26:: [case-of-boundaryout,is,2]
Proved rule28:: [Boundary Output, , --> CORRECT:

Boundary Output is OK]

Boundary Output -- > CORRECT:

Boundary Output is OK.
Trying rule4:: [Boundary Control, , -->
Maybe you have tried to check syntax with

a file without PARENT ACTIVITY BOX information]

Trying rulel:: [boundarysarule,is,stalled]
Trying rule33:: [Boundary Control, ,--> ERROR: No boundary control label]

Trying rule34:: [Boundary Control, ,--> ERROR: Parent Control has no label]
Trying rule35:: [Boundary Control, , --> ERROR: No boundary control arrow.

D-21

Should have at least one boundary control arrow]
Trying rule36:: [Boundary Control, , --> ERROR: No parent control arrow.

Should have at least one parent control arrow]

Trying rule37:: [Boundary Control, , --> RECOMMEND:
You would better reduce the number of arrows to six

below]
Trying rule39:: [Boundary Control, , --> CORRECT: Boundary

Control is OK]

Trying rule3S:: [case.ofboundary-con,is,l]

Trying rule40:: [Boundary Control, , --> CORRECT: Boundary

Control is OK]
Trying rule38:: [case-of-boundary.con,is,2]
Proved rule38:: [case.of.boundary.con,is,2]
Proved rule40:: [Boundary Control, , --> CORRECT: Boundary

Control is OK]

Boundaiy Control -- > CORRECT: Boundary Control is OK.

Trying ruleS:: [Boundary Mechanism, ,--> PLEASE START AGAIN ''']

Trying rulel:: [boundarysarule,is,stalled]

Trying rule45:: [Boundary Mechanism, ,--> ERROR:

No boundary mechanism label]

Trying rule46:: [Boundary Mechanism, ,--> ERROR:
Parent Mechanism has no label]
Trying rule47:: [Boundary Mechanism, ,--> ERROR: The number of

Mechanism arrow(s) of Parent Activity box is greater than that
of Boundary Mechanism arrow(s) -- Must have the same

number]

Trying rule48:: [Boundary Mechanism, ,--> ERROR: The number of
Mechanism arrow(s) of Parent Activity box is less than
that of Boundary Mechanism arrow(s) -- Must have the same

number]

Trying rule49:: [Boundary Mechanism, ,--> RECOMMEND:
You would better reduce the number of arrows to six

below]

Trying ruleSO:: [Boundary Mechanism, ,--> CORRECT: Boundary

Mechanism is OK]

Trying rule52:: [Boundary Mechanism, ,--> CORRECT: Boundary

Mechanism is OK]
Trying rule51:: [case-of-boundary-mech,is,1]

Proved rule5i:: [case.ofboundarymech,is,1]
Proved rule52:: [Boundary Mechanism, ,--> CORRECT: Boundary

Mechanism is OK]

Boundary Mechanism -- > CORRECT: Boundary

Mechanism is OK.

D-22

Question: Do you wish to see how this answer

was arrived at(y./n.)? y.
GOAL:: [Boundary Input, -- > CORRECT: Boundary Input is OK]
GOAL:: [Boundary Output, , CORRECT:

Boundary Output is OKI

GOAL:: [Boundary Control,, --> CORRECT: Boundary
Control is OK]

GOAL:: [Boundary Mechanism, --> CORRECT: Boundary

Mechanism is OK]
rule52:: [Boundary Mechanism, --> CORRECT: Boundary

Mechanism is OK] Was Derived From
[case-of.boundary-mech,is,1] AND

[child-title,is,Make Example] AND

[Make Example,mechanism-is,Mechanisml] AND
[boundary-mechanisml,is,Mechanisml]

TOLD:: [boundary-mechanisml,is,Mechanisml]
TOLD:: [Make Example,mechanism-is,Mechanisml]

KNOWN:: was-told:: [childtitle,is,Make Example]

rule5l:: [case-of-boundary-mech,is,l] Was Derived From
[boundary.mechanism,has.number,l] AND
[child-title,is,Make Example] AND

[Make Example,has-mechanism-number,l]

TOLD:: [Make Example,hasmechanism.number,l]
KNOWN:: wastold:: [child.title,is,Make Example]

TOLD:: [boundary-mechanism,has-number,l]
rule40:: [Boundary Control, , --> CORRECT: Boundary

Control is OK] Was Derived From
[case-of-boundary.con,is,2] AND
[boundary.controll,is,conl] AND

[boundary-control2,is,con2] AND

[child-title,is,Make Example] AND

[Make Example,control-is,conl] AND
[Make Example,control-is,con2]

TOLD:: [Make Example,control.is,con2]

TOLD:: [Make Example,controlis,conl]

KNOWN:: was-told:: [child-title,is,Make 2xample]
TOLD:: [boundary-control2,is,con2]

TOLD:: [boundary-controll,is,conl]

rule38:: [case-of-boundary-con,is,2] Was Derived From
[boundary.control,has-number,2] AND
[child.title,is,Make Example] AND
[Make Example,has-controlnumber,2]

D-23

TOL'D:: [Make Example,has.control-.number,2]
KNOWN:: was..told:: [rhild-.title,is,Make Example]
TOLD:: [boundary..control,has-.number,2]
rule28:: [Boundary Output, , -- > CORRECT:

Boundary Output is OKI Was Derived From
[case-.ot.boundary-.out ,is ,2] AND
[boundary-.outputi ,is ,out 1] AND
[boundary-.output2, is ,out2] AND
[child-.title,is,Make Example) AND
[Make Exaznple,output-.is,outl) AND
[Make Example ,output-.is ,out2]

TOLD:: [Make Example,output..is,out2]
TOLD:: [Make Exaiple,output-is,outl]
KNOWN:: was-.told:: [child-.title,is,Make Example]
TOLD:: [boundary-.output2,is,out2]
TOLD:: [boundary..outputl,is,outl)
rule26:: [case-.of-.boundary-.out,is,2] Was Derived From

[boundary-.output ,has-.number,2] AND
[child-.title,is,Make Example] AND
[Make Example ,has-.output-.number ,2]

TOLD:: [Make Exaniple,has-.output-number,2]
KNOWN:: was-.told:: (child..title,is,Make Example]
TOLD:: [boundary-output ,has..number .2)
rulel4:: [Boundary Input, * -)CORRECT: Boundary Input is OK]

Was Derived From
[case-.ofboundaryin,, 2] AND
[bouxdary-inputl, is *in2] AND
[bouxidary-.input2 ,is ,Inl] AND
[child-title,is,Make Example] AND
[Make Example,inputjis,in2] AND
[Make Example, inputis ,Inl]

TOLD:: (Make Example,input-is,Inl]
TOLD:: [Make Exanple,input-is,in2]
KNOWN:: was-told:: [child-.title,is,Make Example]
TOLD:: [boundaryyjnput2,is,Inl]
TOLD:: [boividary..inputI, is, in21
rulel2:: [case-.of-.boundary..n,is,2] Was Derived From

[boundary.input ,has..number,2] AND
[child-.title,is,Make Example] AND
(Make Example ,has-nput-.number .2]

TOLD:: [Make Example~has-input-.number,2]
TOLD:: [child-.title,is,Make Example]
TOLD:: [boundary-nput,has-.number,2]

D-24

/*****************!* WARNING

/* After this session, all working memory elements will */
/* be erased except for elements being protected by
1* keep statements in the knowledge base.

******************* ************** *** ****** * *** ***,

Question: Do you wish to save the current working memory
in a file(y./n.)? n.

D-25

/* WELCOME TO IDEFO SYNTAX EXPERT SYSTEMS
I* *

/* I. Type start. to begin a new session.
I* *

/* II. Answer all questions using lower case, ending with */
/* a period. */
I* *

/* III. Type halt. to exit prolog session.
/* */

yes

I ?- halt.
ares>

D-26

Appendix E. Programmer's Guide

Programmer's Guide introduces several topics of interest to ISES programmers

and developers.

E-1

Table of Contents

Page

Appendix E. Programmer's Guide. E-1

Table of Contents. E-2

List of Figures. E-3

Introduction E-4

Software Documentation. E-4

Make File E-6

Files produced by IDT. E-6

* .pro. E-6

CHECKBOX.PRO. E-7

CHECKBOUNDARYPRO E-7

E-2

List of Figures

Figure Page

E.1. Contents of Makefile E-6

E.2. Example of IDEFo Diagram E-8

E.3. Predicate Data File Produced by Save (.pro) (parent) E-9

E.4. Predicate Data File Produced by Save (.pro) (child) E-10

E.5. Predicate Data File Produced by Activity E-11

E.6. Predicate Data File Produced by Boundary E-12

E-3

Introduction

The focus of this thesis effort was to design and implement an application of

expert system formulation for checking IDEF0 syntax of IDEFo diagrams as derived

from SAtool. The work in this thesis is divided into two major ctegories: IDEF0

Diagram Translator and IDEF0 Syntax Expert System. The IDEF0 Diagram Trans-

lator translates the IDEF0 diagrams into a set of predicate forms and the predicate

forms file is used as the data base of the IDEF0 Syntax Expert System. The IDEF0

Syntax Expert System checks the IDEF0 syntax of IDEF0 diagrams. The objective

of this appendix is to specify the procedure for generating the executable files and

to outline some basic concepts of the translator and expert system.

Software Documentation

The existing source code is fully documented in AFIT System Development

Documentation Guidelines and Standards (8). The following list shows the file

header of the source codes.

" DATE: Date of current version number.

" VERSION: Current version number.

" TITLE: Title for this file.

" FILENAME: File name for the module.

* DESCRIPTION: Description of the module's function.

" A UTHOR: Name of one who responsible for this file.

" PROJECT: Name of the software project of which this file is a part.

* OPERATING SYSTEM: Name and version number of operating system under

which this file was written.

* LANGUAGE: Name of language used for source code.

* FILE PROCESSING: How the file is used.

E-4

* CONTENTS: Modules contained in the file.

* HISTORY: List of major changes to the file.

The following list presents the subroutine header of the source codes.

9 DATE: Date of the module.

* VERSION: Current version number.

* NAME: Module name.

* MODULE NUMBER: Module number of current program.

* DESCRIPTION: Text description of the module's function.

* ALGORITHM: Algorithm used.

* PASSED VARIABLES: Variables passed to the module.

e RETURNS: Value returned by the module.

* GLOBAL VARIABLES USED: Variables read by the module.

* GLOBAL VARIABLES CHANGED: Variables changed by the module.

e FILES READ: Files read by the module.

* FILES WRITTEN: Files written by the module.

* HARDWARE INPUT: I/O ports read.

* HARDWARE OUTPUT: I/O ports read.

e MODULES CALLED: Other procedures called.

* CALLING MODULES: What modules call.

• AUTHOR: One who wrote this module.

9 HISTORY: List of major changes to the module.

E-5

OBJECTS = main.o dataddict.o messages.o boxfunctions.o
headerfunctions.o editboxfunc.o
miscfunctions.o ddsearchfuncs.o
endfuncs.o find.o morelinefuncs.o
linelabel.o moreddfuncs.o ddsearchfuncs.o
savefuncs.o
fptfuncs.o sqglefuncs.o fnotefuncs.o
moresave.o screendump.o readfuncs.o
session.o syntaxfuncs.o

HEADERS = globals.h

ALL = sad

CFLAGS = -O

LIBS = -isuntool -isunwindow -lpixrect -Im

sad : $(OBJECTS)

cc $(CFLAGS) $(OBJECTS) $(LIBS) -o SAtool

Figure E.1. Contents of Makefile

Make File

The file of the IDEFo Diagram Translator is included in the files of the SAtool

because the IDEFo Diagram Translator was coded as a part of the SAtool under

the SunOSTM. The file name of source code for the IDEF0 Diagram Translator is

syntaxfuncs.c. The executable file was produced by using the UNIX make utility.

Figure E.1 shows the contents of the Makefile file. The system command make causes

to be compiled and linked all together and generated the executable file, SAtool.

Files produced by IDT

*.pro This file contains a set of predicate data forms into which the IDEF0

Diagram Translator translates the IDEF0 diagram. The symbol * is a file name

which the user specifies. The extension of the file is added automatically. This file is

used to check the IDEFo syntax of boundary arrows in any IDEFo diagram. Figure

E.3 shows an example of the predicate data file translated from the above IDEFo

E-6

diagram shown in Figure E.2. Also, Figure E.4 shows an example of the predicate

data file from the below IDEF0 diagram shown in Digure E.2.

CHECKBOX.PRO This file is a temporary file which is created and overwrited

automatically. Also this file is used for checking the IDEF0 syntax of an activity box

which user specifies in any IDEF0 diagram. Figure E.5 represents the predicate data

file of the activity box, boxI, which is clicked by the user in Figure E.2.

CHECKBOUNDARY.PRO This file contains the predicate data forms of the

boundary arrows and its parent activity box and is a temporary file which is created

and overwrited automatically. Also this file becomes the data base (working memory)

of the IDEF0 Syntax Expert System. Figure E.6 shows the predicate data file of

boundary arrows in Figure E.2.

E-7

AUTHOR: Intaek Kim DATE: 13/02/90 IREADER I

PROJECT: testc02 REV: 1.8 JDATE I

coni con2

box 1aeExot

ml L2 aple ut2

NODE: TE:Make Example NUMBER: C-1
AB

FigurHOR: Example Kim /DE0 1EDaram

PROJECT: estc021 E .0 JAT

confirmed([title, is, 'Make Example']).

confirmed([node, is, 'AO']).

confirmed([activityname, is, 'Make Example']).

confirmed(fI'Make Example' ,number-.is,OJ).

confirmed(['Make Examnple',input-.is,'Inl']).

confirmed(EMake Example',input-.is,'in2']).

confirmed(['Make Example', has-input..number, 2]).

confirmed(['Make Example' ,output-is,'outl']).

confirmed(['Make Example' ,output-is,'out2']).

confirmed(C'Make Example', has-output-number, 2)).

confirmed([Make Example' ,control-.is, 'coni']).

confirmed(['Make Example' ,control-is,'con2']).

confirmed(E'Make Example', has..control..number, 2]).

confirmed([Make Example' ,mechanism.is, 'Mechanismi']).

confirmed(['Make Example', has-.mechanism-.number, 1]).

Figure E.3. Predicate Data File Produced by Save (.pro) (parent)

E-9

confirined([title, is, 'Make Example']).
confirmed([node, is, 'A1'J).
confirmed(Eactivityname, is, 'boxi']).
confirmed(['boxl',nuinber-is,l]).

confirmed(['boxl',input-.is,'in2']).
confirmed(['boxl',input-is,'Inl']).

confirrned(['boxl', has-input-unber, 2]).
confirmed(['boxl',output-.is,'out2']).

confirmed(['box1', has-output-nunber, 1]).
confirmed(['boxl',control-.is,'conl).

confirmed(r'boxl', has-.control-.number, 1]).
confirmed(['boxl' ,mechanism-is,null]).
confirmed([activityname, is, 'box2'J).
confirmedC['box2' ,number-.is,2]).
confirmed(['box2' ,input-.is,'out2']).
confirmed(['box2' ,input..is, 'in3']).
confirmed(['box2', has-nput-.number, 2]).
confirmed(['box2' ,output-.is,in2i]).
confirmed(['box2' ,output-.is, 'outi']).

confirmed(1'box2,output-.is,'out4']).
confirmedC['box2', has-.output-nuxnber, 3]).
confirmed(['box2,control-.is,'con2']).

confirmed(['box2',control-is,'con3']).

confirmed(['box2'. has-.control-.number, 2]).
confirmed(['box2' ,mechanism-is,null]).
confirmed([activityname, is, 'box3')).
confirmed(['box3' ,number-.is,3]).
confirmed(['box3' ,input-is, 'in4']).
confirmed(['box3', has..input..nuinber, 1]).
confirmed(['box3,output-.is,'out2']).

confirmed(['box3',output-is,'con3']).
confirmed(['box3', has-.output-.number, 2]).
confirmed(['box3',control.is,'out4']).
confirmed(['box3', has..control-.nuniber, 1]).
confirmed(['box3',mechanism-is,'Mechanisml']).

confirxned(E'box3' * has..mechanism-.nuxnber, 1]).

Figure EA. Predicate Data File Produced by Save (.pro) (child)

E- 10

confirmed([title, is, 'Make Example']).

confirmed(Enode, is, 'Al']).

confirmed([activityname, is, 'boxi']).

confirmed(['boxl',nuxnber-is,l]).

confirmed(['boxl' ,input-.is, 'in2']).

confirmed(['boxl' ,input-is,'Inl']).

confirmed(['boxl, has..input-.number, 2]).
confirmed(E'boxl' ,output..is,'out2']).

confirmed(['boxl', has-.output..number, 1]).
confirmed(['boxl',control-is,'conl'J).

confirmed(['boxl', has..control-.number, 1]).

confirmed(E'boxl' ,mechanism.is,null]).

Figure E.5. Predicate Data File Produced by Activity

E- 11

confirmed([title, is, 'Make Example']).
confirmed([node, is, 'AO']).
confirmed([activityname, is, 'Make Example']).
confirmed(['Make Example' ,number-is,O]).
confirmed(['Make Example',input-.is,'Inl']).
conf iried(['Make Example',input-.is,'in2']).
confirmed(['Make Example', has-nput-.number, 2]).
confirmed(['Make Example' ,output-is, 'outi']).
confirmed(['Make Example' ,output-.is,'out2']).
confirmed(['Make Example', has..output.number, 2]).
confirmed(['Make Example' ,control-.is, 'coni']).
confirmed(['Make Example' ,control..is,'con2']).
confirmed(['Make Example', has-.control..number, 2]).
confirmed(['Make Example' ,mechanism.is, 'Mechanismi']).
confirmed(['Make Example', hasjnechanism-number, 1]).
confirmed([child.title, is, 'Make Example']).
confirxned([boundary-.controll, is, 'coni']).
confirmed([boundary-.outputl, is, 'outi']).
confirmed([bouidary-.output2, is, lout2']).
confirmed([boundary-inputl, is, 'in2']).
confirmod(boundary-.contro12, is, 'con2']).
confirmed([boundary-input2, is, 'Inl']).
confirmed([boundary.mechanisml, is, 'Mechanismi']).
confirmed([boundary..input, has-.numnber, 2]).
confirmed([boundary-.output, has-.number, 2]).
confirmed(Cboundary..control, has-.number, 2]).
con! irmed([boundary..mechanism, has-.number, 1]).

Figure E.6. Predicate Data File Produced by Boundary

E- 12

Appendix F. Source Code

The purpose of this appendix represents the source code which was imple-

mented during this thesis investigation. This appendix contains two main source

codes: one for IDEFo Diagram Translator, the other for IDEF0 Syntax Expert Sys-

tem.

F-1

Table of Contents

Page

Appendix F. Source Code F-i

Table of Contents F-2

IDEF0 Diagram Translator F-3

IDEFo Syntax Expert System F-72

Inference Engine F-73

Activity IDEFo Syntax Rules F-88

Boundary IDEFo Syntax Rules F-93

F-2

IDEFo Diagram Translator

The purpose of this section is to provide the source code documentation of

the IDEF0 Diagram Translator. The documentation conformed to the software en-

gineering standards in AFIT's System Development Documentation Guidelines and

Standards draft #4 (8).

F-3

* DATE: 3 Feb 1990*
VERSION: 1.0

* TITLE: IDEFO Diagram Translator*
* FILENAME: syntaxfuncs.c*
* DESCRIPTION:*
* This file provides a means of translating the IDEFO diagram *

* into a set of predicate forms and generating the predicates *

* files as the data base of IDEFO Syntax Expert System.
PROJECT: AI

* OPERATING SYSTEM: UNIX 4.3*
* LANGUAGE: C*
* FILE PROCESSING: Must compile with SAtool.*
* CONTENTS: check..input-.aboxo, single..headed-input 0,*

* ~double-headed-input 0, double..headed.input-.withslasho,*
* ~check..output-.aboxo, single..heade-output 0,*

double-.headed-.output.with.control(),
* ~double-.headed..output..withinput 0, double..headed.output ()*
* ~check..control-.aboxo, single.headed-.control(0,*
* ~double-.headed-.control-.with-.slasho,*
* ~double..headed-.control(), check-.mechanism-.aboxo,*
* ~single-headed..mechanism(),search-.labels.touched-.aboxo,*
* ~get-abels-for-.aboxo, save-.arrow-.info-.of-.aboxo,*
* ~create-.temp-.box-.infoo, find.clicked-.box(),
* ~check-.button-.for-.activityo, check-.activityo,*
* ~create-.temp.boundary-.infoo, check-.parent..boxfileo, *

* ~check-.button-.for.boundaryo, check-.boundaryo,
* ~save-.nulboundaryo, search..NLR-.boundary-line..infoo, *

* ~search-.boundary-.infoo, save-.boundary-.line..infoo,*
* ~save-.headerinfoo, traverse-.boxeso, store..predicates(),*
* ~overwrite-.predicateso, get-.filename-.for..predicates()
* ~save..predicateso(

* AUTHOR: Intaek Kim*
HISTORY:*

* 10O/Jan/90 : Modify the print out format*
* 02/Feb/90 : Add save.header-info()
* 04/Feb/90 : Add save-.boundary-info()

$ include <stdio .h>
$ include <suntool/sunview .h>
*include <suntool/canvas .h>
#include <suntool/panel .h>

F-4

#include <suntool/textsw.h>
#include <sys/param.h>
include "globals .h"

/*****************GLOBALS TO THIS FILE **************

int number-.of-.boundary-.input, number-.of-.boundary-.output;
int number-of-boundary-control, number-.of.bouxdary-nechanism;
char last-.file..name[FILE_.NAME_.LENGTH +5]
struct text .line-.struct *Line-labels;

F-5

* DATE: 15 Feb 1990*
* VERSION: 1.0*

* NAME: check-.input-.abox()
* MODULE NUMBER:*
DESCRIPTION:
* This module provides a means of generating a linked *

* list, Line..labels, with all information labels of input*
* arrows attatched on an activity box.*
ALGORITHM:*

* PASSED VARIABLES: tem-.line*

* RETURNS: None*
* GLOBAL VARIABLES USED: Line-.labels*
* GLOVAL VARIABLES CHANGED: Line-labels
* FILES READ: None
* FILES WRITTEN: None*
* HARDWARE INPUT: None*
* HARDWARE OUTPUT:None*
* MODULES CALLED: signle-.headed-.inputo, double-.headedinput()

* double-headed-inputwith-slasho(
* CALLING MODULES: search-.labels-.touched..abox()

* AUTHOR: Intaek Kim
HISTORY:*

* ABSTRACT DATA TYPE:
ORDER OF:

void
check-.input-.abox (tem..line)
struct line-struct *tem-line;

f
extern struct text..line-.struct *Linelabels;
extern add-.to-.inputs-.treeo;
char buf[DESCRIPTION-LINE_.LENGTH+1J;

single.headed..input (tem-.line);
double-.heade&. input (tem-.line);
double-.headed-input-.with-.slash(tem-line);
return;

F-6

* DATE: 25 Feb 1990 *

* VERSION: 1.0 *

* NAME: singleheaded.input() *

* MODULE NUMBER: *

* DESCRIPTION: This module provides a means of hooking the line *

* labels of input arrows with single head to a linked *

* list, Line-label. *

* ALGROTHM: *

* PASSED VARIABLES: tem-line *
* RETURNS: None *

* GLOBAL VARIABLES USED: box,line,Line-labels *

* GLOBAL VARIABLES CHANGED: Line-labels *

* FILES READ: None *

* FILES WRITTEN: None *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: get.closestlabel(), getbranchnodeo, *

* findTOALL-branchnodeo, findbranchnodeo, *

* addto.inputs.tree(0 *

* CALLING MODULES: check-inputabcx() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

single-headed-input(tem-line)
struct line.struct *tem-line;

{
extern getclosest-label(),get.branchnode(),findTOALL-branchnode(;
extern find.branchnode(),add-to-inputs-tree(;
extern struct box-struct *box;
extern struct line-struct *line;
struct line.struct *original-line;
char buf[DESCRIPTIONLINELENGTH +1];
int original-line-type;

if(/* check if tem-line is touched on the left side of */
/* box with 10 deviation. */

(tem-line->end-position.x >= box->swcorner.x-10) &&
(temline->endposition.x <= box->swcorner.x) U
(tem-line->end-position.y <- box->swcorner.y) &
(tem-line->end-position.y >= box->swcorner.y-BXHT) &&

(/* check if tem-line has an end arrow

F-7

(tem-.line->end-.activity..num & (ARROW-.HEAD)) != 0) &&
((tem..line->end-.activity-.num & (DOT-.B..LIDOT.T-.R)) == 0)) f

f* This tem-.line is an input arrow for temp.box with some *
/* toralence, i.e. not require the line must be touched box *
/* so as to be an input arrow(single headed arrow). *

original.line-.type = get..branchnode(tem.line);
original-line = (struct line-.struct *
find..branchnode(original-ine.type);
if(get..closest..label(original-line,buf ,tem..line->struct.type)

==MYTRUE)

{ * tem-line has a line label *
Line-.labels = (struct text-.line-.struct *

add-to-.inputs..tree(Line..labels ,buf);
return;

/* No line label on tem-line - Check if tem-line is a FROM-ALL *
/* type line. If so, search TO-.ALL and its label
if(original-ine->start.activity-num ==FROM-.ALL){
original-.line = (struct line..struct *
find..TO-.ALL.branchnode(original-line->to..from.label);
original..line.type = get-.branchnode(original-line);
original-line = (struct line-.struct *
find..branchnode(original-line-.type);
if(get-.closest-label(original-line,buf ,line->struct.type)

==MYTRUE)

Line-.labels =(struct text-.line-.struct *
add-.to-inputs-.tree(Line-.labels ,buf);

return;

strcpy(buf ,III);

Line-labels a (struct text-.line..struct *
add-.to..inputs-.tree(Line..labels ,buf);

I
return;

F-8

* DATE: 16 Feb 1990 *

* VERSION: 1.0 *

* NAME : double-headed-input() *

* MODULE NUMBER: *

* DESCRIPTION: This module provides a linked list(Line-labels) which *

* has the labels of the input arrows touched on an *

* activity box with double head. *

* ALGORITHM: *

* PASSED VARIABLES: tem-line *

* RETURNS: None *

* GLOBAL VARIABLES USED: box, line *

* GLOBAL VARIABLES CHANGED: Line-labels *

* FILES READ: None *

* FILES WRITTEN: None *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: get2_closest-label(), find-branchnode(), *

* findTOALL-branchnodeo, get.branchnodeo, *

* addtoinputs.tree() *

* CALLING MODULES: check-input-abox() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

double-headed-input(temline)
struct line-struct *tem-line;

{

extern get2_closest-label (),findbranchnode)),findTOALL-branchnode ();
extern get.branchnode(, add-toinputs _treeo;

extern struct box-struct *box;
extern struct line-struct *line;
struct line-struct *originalline;
char buf[DESCRIPTIONLINELENGTH +1];
int original-linetype;

if((temline->endposition.x >= box->swcorner.x-10) U
(temline->endposition.x <= box->swcorner.x) &&
(temline->end.position.y <= box->swcorner.y) &

(temline->end.position.y >= box->swcorner.y-BOXHT) &k
/ 1* tem-line is an input arrow with a double headed arrow */
/* in some extend(toralence).
(tem-line->end-activity.num & (ARROWHEAD)) != 0) &&

F-9

((tem-.line->end-.activitynum & (DOT..T..R)) != 0)){
original-line-.type = get-.branchnode(tem.line);
original-line = (struct line..struct *

f ind-.branchnode (original-line-.type);
if(/* Exists the line label on tem-.line *

get2-closest-label(original-line ,buf ,tem..line->struct.type)
zMYTRUE) f

Line-.labels = (struct text-.line-.struct *
add-to.inputs..tree(Line-labels ,buf);

return;

/* No line label on temjline - Check if tem-line is a FROM-.ALL *
/* type line. If so, search TO-ALL and its label.
if(original-line->start.activity.num = FROM-.ALL){

original-.line = (struct line-.struct *
find-.TQ..ALL-.branchnode (originalline->to-from.label);

original-ine-type = get..branchnode(original..line):
original-.line = (struct line-.struct *

f ind-.branchnode (original-line.type);
if(get2..closest-.label(original-line ,buf ,line->struct-.type)

== MYTRUE) f

Line-labels = (struct text-.line-.struct *
add-.toinputs.tree(Linelabels ,buf);
return;

strcpy (buf ,")
Line-.labels =(struct text-line.struct *
add-.to.inputs-.tree(Line-labels ,buf);

I
return;

F-10

* DATE: 16 Feb 1990 *

* VERSION: 1.0 *

* NAME : double-headed-inputwithslash() *

* MODULE NUMBER: *

* DESCRIPTION: This module provides a means of adding the line
labels with a slash of input arrows with double head

*to Line-labels structure

* ALGORITHM:
* PASSED VARIABLES: tem-line *

* RETURNS: None

* GLOBAL VARIABLES USED: box *

* GLOBAL VARIABLES CHANGED: Line-labels *

* FILES READ: None
* FILES WRITTEN: None *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: get3_firstlabel(), add_toinputs-tree()
* CALLING MODULES: check-input-abox()
* AUTHOR: Intaek Kim
* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

double-headed-input-with-slash(tem.line)

struct line.struct *tem-line;

extern get3_firstlabel(),addto_inputs-reeo;

extern struct box-struct *box;

char buf[DESCRIPTIONLINELENGTH +1];

if((tem-line->start-position.x < box->swcorner.x+BOX.WIDTH+15) &&

(tem.line->start-position.x >= box->swcorner.xBOXWIDTH) &&

(tem.line->start-position.y <= box->swcorner.y) &&
((tem-line->start-activitynum & (ARROWHEAD)) !=0) &&
((temline->start-activitynum & (DOTBL)) != 0))

if(get3_first-label(temline,buf) == MYTRUE) {
Line-labels - (struct text-line-struct *)
addto-inputstree(Line-labels,buf);
return;
}

strcpy(buf,"");
Line-labels - (struct text-line-struct *)

F-i1

add-to.inputs-.tree(Linejlabels ,buf);

return;

F- 12

* DATE: 17 Feb 1990 *

* VERSION: 1.0 *

* NAME: checkoutput.abox() *

* MODULE NUMBER: *

* DESCRIPTION: *

* This module provides a means of generating a linked *

* list, Line-labels, with all information labels of *

* output arrows attatched on an activity box. *

* ALGORITHM: *

* PASSED VARIABLES: tem-line *

* RETURNS: None *

* GLOBAL VARIABLES USED: Line-labels *

* GLOBAL VARIABLES CHANGED: Line-labels *

* FILES READ: None *

* FILES WRITTEN: None *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: single-headed-outputo, double-headed-output() *

, double-headed-output.with.input 0 *

* double-headed.outputwith-control() *

* CALLING MODULES: search-labels-touched-abox) *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

void

check-output.abox(temline)
struct line-struct *tem-line;

{
extern struct text-line-struct *Line-labels;

singleheadedoutput(tem-line);

double.headed-outputwith-control(tem-line);
double-headed-output.with-input(tem-line);

double-headed-output(tem-line);

return;

F-13

* DATE: 17 Feb 1990 *

* VERSION: 1.0 *

* NAME: single-headed.output() *

* MODULE NUMBER: *

* DESCRIPTION: *

* This module provides a means of adding line labels of *

* output arrows with single head. *

* ALGORITHM: *

* PASSED VARIABLES: tem-line *

* RETURNS: None *

* GLOBAL VARIABLES USED: Line-labels *

* GLOBAL VARIABLES CHANGED: Line-labels *

* FILES READ: None *

* FILES WRITTEN: None *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: get-first-label(), addto-inputstree() *

* CALLING MODULES: check.outputabox() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

singleheadedoutput(tem-line)
struct line-struct *tem-line;

extern get-first-label(),add-to-inputstreeo;
char buf[DESCRIPTIONLINELENGTH +1];

if(/* Output leaves the right side of a box - single headed arrow
(tem-line->startposition.x < box->swcorner.x+BOXWIDTH+15) &&
(tem-line->start-position.x >= box->swcorner.x+BOXWIDTH) &k

(temline->start-position.y <= box->swcorner.y) &&
(temline->start.position.y >= box->swcorner.y-BOXHT) &
((tem.line->startactivitynum & (ARROWHEAD)) == 0))
{
if(get-first.label(tem-line,buf) == MYTRUE) {
Line-labels = (struct text-line-struct *)

add-to.inputstree(Line-labels,buf);
return;

}
strcpy(buf,"");

Line-labels = (struct text-line-struct *)

F- 14

add..to-ixiputs-.tree(Line-l.abels ,buf);

return;

F- 15

* DATE: 17 Feb 1990*
* VERSION: 1.0
* NAME: double.headed-.output-.with..control ()*
* MODULE NUMBER:*
* DESCRIPTION:*

* This module provides a means of adding the line labels*
* of the output arrows with double heads which become*
* controls of another activity box to a linked list. *

* ALGORITHM:*
* PASSED VARIABLES: tem-.line
* RETURNS: None*
* GLOBAL VARIABLES USED: line, Line-.labels*
* GLOBAL VARIABLES CHANGED: Line-labels*
* FILES READ: None*
* FILES WRITTEN: None*
* HARDWARE INPUT: None*
* HARDWARE OUTPUT: None
* MODULES CALLED: get-.branchnodeo, find..branchnodeo,*

* ~~get3-.closest..label(), find.TO-.ALL..branchnode()
* ~~add-.to-.inputs-.tree()

* CALLING MODULES: check-.output-.abox()
* AUTHOR: Intaek Kim*
* HISTORY:*
* ABSTRACT DATA TYPE:*
* ORDER OF:*

double-.heade&..output-.with-.control (tem-line)
struct line..struct *tem-line;

extern get..branchnode(),find.branchnode() ,get3-.closestlabel();
extern find-.TO-.ALLbranchnodeo;
extern struct line-.struct *line;

struct line..struct *original-line;
char buf[DESCRIPTION-.LINELENGTH+13;
int original-line-.type;

if(/* Output with a double headed control arrow - need to *
/* search the tem..line for the closest label with a slash *
/* and get the label after the slash.
(tem..line->end.position.y > box->swcorner.y-BOX-.HT-15) kk
(tem..line->end..position.y <= box->swcorner.y-BOX-HT) k
(tem..line->end-.position.x <- box->swcorner.x4BOX-WIDTH) kk
(tem..line->end-.position.x >- box->swcorner.x) kk

F-i16

((tem..line->end-.activity-.num & (ARROW..HEAD)) !- 0)
((tem-line->end-activity-.num & (DOT..B.L)) != 0))

originalline-.type = get-.branchnode(tem..line);
original-line = (struct line-.struct *

find-.branchnode(original-line-.type);
if(get3-.closest-.label(original-line ,buf,tem-.line-)struct-.type)

NYTRUE) (
Line-.labels = (struct text-ine-.struct *
add-.toinputs-.tree(Linelabels ,buf);
return;
I

/* No line label on tem-line - Check if tem-.line is a *
/* FROM-.ALL type output. If so, search TO-.ALL and its label.*/
if(originalline->start-activity-.num FROM-.ALL){
original-line = (struct line-.struct *
find-.TO-.ALL-.branchnode (original-line->to-.from-label);

original-ine-.type = get-.branchnode(original-.line);
original-line = (struct line-.struct *
find-.branchnode (original-line-.type);
if(/*have found the branchnode of the TO-.ALL line segment*/

get3-.closest-.label(original-.line,buf ,line->struct-.type))

Line-.labels = (struct text..line..struct *
add-to-.inputs-.tree(Line-.labels ,buf);
return;

strcpy(buf, un);

Line-labels = (struct text-line-.struct 0)
add.to-inputs-.tree(Line-labels ,buf);

return;

F- 17

* DATE: 17 Feb 1990 *

* VERSION: 1.0 *

* NAME : double.headed-output-with-input() *

* MODULE NUMBER: *

* DESCRIPTION: This module provides a means of adding the line *

* labels of the output with double heads and the slash*
* to a linked list, Line-labels. *

* ALGORITHM: *

* PASSED VARIABLES: tem-line *

* RETURNS: None *

* GLOBAL VARIABLES USED: line *

* GLOBAL VARIABLES CHANGED: Line-labels *

* FILE READ: None *

* FILES WRITTEN: None *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: get-branchnodeo, find-branchnodeo, *

* get3_closest-label(), add-to-inputs-tree() *

* f indTOALL-branchnode() *

* CALLING MODULES: check.output.abox() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

double-headed-outputwith-input(tem-line)
struct line-struct *tem-line;
{
extern get.branchnode(),find-branchnode(),get3_closest-label();
extern add-to-inputstree(),find_TOALLbranchnode(;
extern struct line-struct *line;
struct line-struct *originalline;
int original-line-type;
char buf[DESCRIPTIONLINELENGTH +1);

if(/* tem-line is an output with a double headed input */
/* arrow on a box */
(tem-line->end-position.x >= box->swcorner.x -15) &&
(temline->end-position.x <= box->swcorner.x) &&
(tem-line->endposition.y <= box->swcorner.y) &&
(tem-line->end-position.y >a box->swcorner.y -BOXHT)&&
((tem-line->end-activity.num & (ARROWHEAD)) ! 0) &&
((temline->end.activity.num & (DOTTR)) 0))

{

F- 18

originalline-type = get-.branchnode(tem-.line);
original-line = (struct line-.struct 0)

find-.brancbnode(origiial-line-.type);
if(/* Exists label on the original line */

get3..closest-.label(original-line ,but ,tem..line->struct.type)
==MYTRUE) f

Line-.labels = (struct text.line-.struct *
add-.toinputs-.treeCLine..labels ,buf);
return;
I

if(/* No line label on tem-.line - Check if
/* tem-.line is a type of FROM-ALL
/* line. If so, Search TO-.ALL and its label. *
original ..line->start-.activity-.num ==FROM-.ALL)

original-.line = (struct line-.struct *
f ind-TD..ALL-.branchnode (original..line->to..fromlabel);

originalj. ine-.type = get-.branchnode (original-lime);
original-line = (struct line-.struct *)

find-.branchnode (originalj. ine-.type);
if(/* Find the branchnode of the TO-.ALL line segment *

get3-closest..label(original-line,buf ,line->struct.type)
KYTRUE)

Line-.labels = (struct text..line-.struct *
add-.to..inputstree(Linelabels ,buf);

return;

strcpy(buf,"");
Line-.labels = (struct text-.line-.struct *
add-to-.inputs-.tree(Linelabels ,buf);

I
return;

F- 19

* DATE: 17 Feb 1990 *

* VERSION: 1.0 *

* NAME: double.headed.output() *

* MODULE NUMBER: *

* DESCRIPTION: This module provides a means of adding the line *

* labels of the output with double heads to a linked *

• list, Line-labels. *

* ALGORITHM: *

* PASSED VARIABLES: tem-line *

* RETURNS: None *

* GLOBAL VARIABLES USED: Line-labels *

* :LOBAL VARIABLES CHANGED: Line-labels

* FILES READ: None *

* FILES WRITTEN: None *

* HARDWARE INPUT: None *

* HAREWARE OUTPUT: None *

* MODULES CALLED: get2_first-label(), addtoinputstree() *

* CALLING MODULES: check.output.abox() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

double.headed.output(tem-line)
struct line-struct *tem-line;
{
extern get2_first-label(),add-to_ inputs-tree(;
char buf[DESCRIPTIONLINELENGTH +1];

if(/* Output line leaves the right side of a box and there is */
/* a double headed arrow.
(tem-line->startposition.x <= box->swcorner.x + BOX-WIDTH + 10) k&
(tem-line->start.position.x >= box->swcorner.x + BOX-WIDTH) &&
(tem_line->startposition.y <= box->swcorner.y) &&
(temline->startposition.y >= box->swcorner.y - BOXHT) &&
((tem-line->start-activitynum & (ARROWHEAD)) 0) &

((tem-line->start-activitynum & (DOTBLIDOT.TR)) != 0))
{
if(get2_first-label(tem-line,buf) == MYTRUE) {

Line-labels = (struct text-line.struct *)
addto.inputs.tree(Line-labels,buf);

return;

F-20

strcpy(buf ,"");
Line-.labels c (struct text..line-.struct *

add-.toinputs-tree(Line-labels ,hlf);

return;

F-21

* DATE: 19 Feb 1990 *

* VERSION: 1.0 *

* NAME: check-control-abox() *

* MODULE NUMBER: *

* DESCRIPTION: This module provides a means of generating a linked *

* list(Line-labels) which has the information of labels*
* of the control arrows attatched on an activity box. *

* ALGORITHM: *

* PASSED VARIABLES: tem-line *

* RETURNS: None

* GLOBAL VARIABLES USED: None *

* GLOBAL VARIABLES CHANGED: None *

* FILES READ: None *

* FILES WRITTEN: None *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: single-headed-control(), double.headed.control() *

* double-headed-control.with-slash() *

* CALLING MODULES: search-labelstouchedabox() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

void
check-control-abox(tem.line)
struct line-struct *tem-line;

extern struct text-line-struct *Line-labels;

singleheaded.control(tem.line);
double-headed-control(tem-line);
double-headedcontrol-with.slash(tem.line);
return;

}

F-22

* DATE; 19 Feb 1990

* VERSION: 1.0 *

* NAME: single-headed-control() *

* MODULE NUMBER: *

* DESCRIPTION: This module provides a means of adding the line *

*labels of the ccntrol arrows with a single head to
*the linked list, Line-labels.
* ALGORITHM: *

* PASSED VARIABLES: tem-line *

* RETURNS: None

* GLOBAL VARIABLES USED: line, Line-labels *

* GLOBAL VARIABLES CHANGED: Line-labels *

* FILES READ: None
* FILES WRITTEN: None

* HARDWARE INPUT: None

* HARDWARE OUTPUT: None *
* MODULES CALLED: get-closest-label(), add-to-inputs-tree() *

* get-branchnodeo, find-branchnodeo, *

• findTOALL-branchnode() *

* CALLING MODULES: check-control-abox() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

singleheaded-control(tem-line)
struct line.struct *tem-line;
{
extern get-closest-label(),add_-toinputstree(),get-branchnodeo;
extern find.branchnode(),findTOALL.branchnodeo;
extern struct line-struct *line;
struct line-struct *originalline;
int original.line-type;
char buf[DESCRIPTIONLINELENGTH +1];

if(/* Control line comes to the upper side of a box and there */
/* is a single headed arrow.
(tem.line->end-position.x <= box->swcorner.x + BOX-WIDTH) &&
(tem-line->endposition.x >= box->swcorner.x) &&
(tem-line->endposition.y >= box->swcorner.y - BOXHT - 10) &&
(tem.line->endposition.y <= box->swcorner.y - BOXHT) &&
((tem_line->endactivitynum & (ARROWHEAD)) !=)
((tem-line->end.activity-num & (DOTBLIDOTT.R)) -= 0))

F-23

original -1 ine.type = get-.branchnode(temline);
original-Pre = (struct line~struct *)

f ind..branchnode (original-j.ine-.type);
if(/* found a label on the line */

get..closest-label(original-.line,buf ,tem-.line->struct..type)
== MYTRUE) {
Line-.labels = (struct text-.line-.struct *

add-.toinputs-.tree(Line-labels ,buf);
return;
I

if(/* No label on tem-line - Check if a FROM-.ALL exists. *
/* If so, search TO-.ALL and get a label for this line. *
original.line->start-activity-.num == FROM-.ALL){
original-line =(struct line-.struct *)

find-O-.ALL..branchnode(originalline->tofrom..1abel);
original-line-.type = get-.branchnode(original-line);

or.ginal-line = (struct line-.struct *
find..branchnode(original-line.type);

if(/* found the branchnode of the TO-ALL line segment *
get.closest-label (originalhline ,buf,line->struct-.type)
== MYTRUE) (

Line-labels = (struct text-ine-.struct *
add.to-inputs-.tree(Linejlabels ,buf);

return;

strcpy(buf,"");
Line-.labels = (struct text-ine-.struct *

add-.to-.inputstree(Linelabels ,buf);

return;

F-24

* DATE: 1 Feb i90 *

* VERSION: 1.0 *

* NAME : double-headed-control-with-slash() *

* MODULE NUMBER: *

* DESCRIPTION: This module provides a means of adding the labels *

* of the control arrows with double heads and the *

• slash to the linked list, Line-labels. *

* ALGORITHM: *

* PASSED VARIABLES: tem-line *

* RETURNS: None

* GLOBAL VARIABLES USED: Line-labels
* GLOBAL VARIABLES CHANGED: Line-labels *

* FILES READ: None *

* FILES WRITTEN: None *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: get2_closest-label(), add-to-inputs-treeo, *

• getbranchnodeo. findTOALL-branchnode() *

• find-branchnode() *

* CALLING MODULES: check-control-abox() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

double-headed-control-with-slash(tem-line)
struct line-struct *tem-line;

extern get2_closest-label(),add.to_inputs_.tree(,get-branchnodeo;
ext ern findTOALL-branchnode)),f ind-branchnode ();
struct line-struct *original-line;
char buf[DESCRIPTIONLINELENGTH +1];
int original-line-type;

if(/* Have a control with a double headed arrow */
(temline->end.position.y <= box->swcorner.y-BOXHT) &&
(tem.line->end.position.y >= box->swcorner.y-BOXHT-15) &&

(temline->endposition.x <= box->swcorner.xBOXWIDTH) U
(temline->endposition.x >- box->swcorner.x) &&
((tem-line->end-activity-num & (ARROWHEAD)) !- 0) 0
((temline->end-activity.num & (DOTBL)) != 0))

original-line-type = get.branchnode(temline);

F-25

original-line = (struct line-struct *)
find-.branchnode(original-line.type);

if (get2-.closest-.label (original-.line ,buf ,tem-line->struct-type)
==MYTRUE) (

Line-.labels z (struct text..ine-.struct *
add-.to-.inputs-.tree(Line-.labels ,buf);

return;

if(/* No label on tem-line -Check if tem-.line is a FROM-ALL *
/* type line. If so, search the TO-.ALL and get a label *
/* from TO-.ALL line.
original-.line-start-activity-.num ==FROM-ALL){
original-line = (struct line-.struct *)

find-.TO.ALLbranchode(original-line->to-.fromlabel);
original-ine-.type = get-.branchnode(original-line);

original-.line = (struct line-.struct *)
find-.branchnode(original-line-.type);

if(get2-.closestlabel(original-line,buf ,line->struct.type)
== MYTRUE) f

Line-labels = (struct text-ine-.struct *
add-.toinputs-tree(Line-labels ,buf);

return;

strcpy(buf ,"");
Line-labels = (struct text-ine-.struct *

add-.to-.inputstree(Linelabels ,buf);

return;

F-26

* DATE: 20 Feb 1990 *

* VERSION: 1.0 *

* NAME: double-headed-control() *

* MODULE NUMBER: *

* DESCRIPTION: This module provides a means of adding the line *

* labels of the control arrows with double head to *

* the linked list, Line-labels. *

* ALGORITHM: *

* PASSED VARIABLES: tem-line *

* RETURNS: None *

* GLOBAL VARIABLES USED: Line-labels *

* GLOBAL VARIABLES CHANGED: Line-labels *

* FILES READ: None *

* FILES WRITTEN: Nnone *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: get3_first-label(), addto.inputs_tree() *

* CALLING MODULES: check-control-abox() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

double-headed-control(tem-line)
struct line-struct *tem-line;

{
extern get3_firstlabel(),add-to-inputstreeo;
char buf[DESCRIPTIONLINELENGTH +1];

if((tem-line->start-position.x <= box->swcorner.x+BOXWIDTH+10) &
(tem.line->start.position.x >- box->swcorner.x+B0XWIDTH) &&

(tem-line->star-position.y <= box->swcorner.y) &&
(tem-line->start.position.y >= box->swcorner.y-BOXHT) &&
((tem.line->start-activitynum k (ARROWHEAD)) != 0) &&
((tem_line->start-acivitynum & (DOTTR)) != 0))

{
if(get3_first-label(tem-line,buf) == MYTRUE) {

Line-labels = (struct text-line-struct *)
add-to.inputs.tree(Line-labels,buf);

return;

strcpy(buf ,"");
Line-labels = (struct text-line-struct *)

F-27

add-.to-inputs-~tree(Line..abels ,buf);

return;

F-28

* DATE: 21 Feb 1990 *

* VERSION: 1.0 *

* NAME: check-mechanismabox() *

* MODULE NUMBER: *

* DESCRIPTION: This module provides means of generating a linked *

* list, Line-labels, with all information labels of the *

* mechanism arrows attatched on an activity box. *

* ALGORITHM: *

* PASSED VARIABLES: tem-line *

* RETURNS: None *

* GLOBAL VARIABLES USED: Line-labels *

* GLOBAL VARIABLES CHANGED: None *

* FILES READ: None *

* FILES WRITTEN: None *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: single.headed.mechanism() *

* CALLING MODULES: search-labels-touched-abox() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

void
check-mechanism-abox(tem-line)
struct line-struct *tem-line;
{
extern struct textline-struct *Line-labels;

singleheaded.mechanism(tem-line);
return;

}

F-29

* DATE: 21 Feb 1990 *

* VERSION: 1.0 *

* NAME: single-headed-mechanism() *

* MODULE NUMBER: *

* DESCRIPTION: This module provides a means of adding the line *

* labels of the mechanism arrows with a single head to *

* a linked list, Line-labels. *

* ALGORITHM: *

* PASSED VARIABLES: tem-line *

* RETURNS: None *

* GLOBAL VARIABLES USED: line, Line-labels *

* GLOBAL VARIABLES CHANGED: Line-labels *

* FILES READ: None *

* FILES WRITTEN: None *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: getbranchnodeo, find.branchnodeo, *

* get-closest-label(), find_TOALL-branchnode() *

* add-to-inputs-tree () *

* CALLING MODULES: check.mechanism.abox() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

single-headedmechanism(tem-line)
struct line-struct *tem-line;

{

extern get-branchnode(),find.branchnode(),get-closestlabel();

extern findTOALL-branchnode(),add-to-inputs-treeC);

extern struct line-struct *line;

struct line-struct *original.line;

int original-linetype;

char buf[DESCRIPTIONLINELENGTH +1);

if((tem.line->end-position.x <= box->swcorner.x+BOXWIDTH) &k

(temline->endposition.x >= box->swcorner.x)

(temline->end-position.y >= box->swcorner.y) &&

(tem-line->end-position.y <= box->swcorner.y+15))
{
original-linetype = get-branchnode(tem.line);

original-line = (struct line-struct *)

find.branchnode(originalline-type);

F-30

if(get-closest-.label(original-line,buf ,tem-.line->struct-.type)

w-g MYTRUE) f
Line-l~abels = (struct text-line..struct *

add-.toinputs..tree(Line..labels ,buf);
return;

I
if(original-ine->start-activity-.num == FROM-.ALL){

original-line = (struct lirie-.struct *)
find-TO-.ALL-.branchnode (originaline->to-.fromlabel);

originaline-.type = get-branchnode (original-.line);
original-.line = (struct line-.struct *)

find-.branchnode (original-ine.type);
if(get..closest-label(original-line,buf ,line->struct-.type)

== MYTRUE) f

Line-.labels = (struct text-ine.struct *
add-to.inputs-.tree(Line-.labels ,buf);

return;

strcpy(buf, "');

Line-.labels = (struct text-.line-.struct *

}d-oipt-re(ielbl~u)

return;

F-31

* DATE: 15 Feb 1990
* VERSION: 1.0*

* NAME: search-.labels-.touched-.aboxoC
* MODULE NUMBER:*
* DESCRIPTION:*

* This module provides a means of searching the line *

* label in accordance with the ICOM code.*
ALGORITHM:*

* PASSED VARIABLES: tem-line*

* RETURNS: None*
* GLOBAL VARIABLES USED: Line-.labels*
* GLOVAL VARIABLES CHANGED: None*
* FILES READ: None*
* FILES WRITTEN: None
* HARDWARE INPUT: None*
* HARDWARE OUTPUT:None*
* MODULES CALLED: check-.input-.aboxo, check-.output.aboxo,*

* check-.control-aboxo,*
* check..mechanism.aboxO),*

* CALLING MODULES: get-abels-for-.abox()

* AUTHOR: Intaek Kim*
HISTORY:*

* ABSTRACT DATA TYPE:
ORDER OF:

search-.labels..touched..abox(tem..line ,indicator)
struct line-.struct *tem-line;
char indicator;

extern struct text-ine-.struct *Line-labels;

if(tem.line - NULL) return;
else (
search-.labels..touched..abox (tem-.line->left ,indicator);

switch(indicator){
case III:
check..input-.abox (tem.line);

break;

F-32

case '0':
check.output-.abox~tem-.line);
break;

case 'C':
check..cortrol-abox(tem-line);
break;

case 'M':
check-.mechanism-.abox(tem-.line);
break;

default:
break;

return;

F-33

* DATE: 15 Feb 1990 *

* VERSION: 1.0 *

* NAME: getlabels.forabox *

* MODULE NUMBER: *

* DESCRIPTION: *

* This module provides a means of constructing a linked list *

* (Line-labels) made of the line labels in accordance with *

* the variable, indicator. *

* ALGORITHM: *

* PASSED VARIABLES: indicator *

* RETURNS: None *

* GLOBAL VARIABLES USED: line-rootnode, Line-labels *

* GLOVAL VARIABLES CHANGED: Line-labels *

* FILES READ: None *

* FILES WRITTEN: None *

* HARDWARE INPUT: none *

* HARDWARE OUTPUT: None *

* MODULES CALLED: search-labelstouched-abox() *

* CALLING MODULES: save-arrowinfo-of-abox() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

struct text-line-struct *

get-labels-for-abox(indicator)
char indicator;
{
extern struct li-e.struct *line-rootnode;
extern struct text-line-struct *Line-labels;
struct line-struct *temporary-line;

Line-labels = NULL;

temporary-line - line-rootnode;
while(temporary-line != NULL) {
searchlabels.touched.abox(temporary.line,indicator);
temporary-line = temporary-line->next;
}

return(Line-labels);
}

F-34

* DATE: 15 Feb 1990 *

* VERSION: 1.0 *

* NAME: save-arrow.infoof.abox() *

* MODULE NUMBER: *

* DESCRIPTION: *

* This module provides a means of saving all information of *

* arrows(ICOM) attatched on a box to a file. *

* ALGORITHM: *

* PASSED VARIABLES: fp, tem-box *

* RETURNS: None *

* GLOBAL VARIABLES USED: box *

* GLOVAL VARIABLES CHANGED: box *

* FILES READ: None *

* FILES WRITTEN: *.pro, CHECKBOX.PRO, or CHECKBOUNDARY.PRO *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: get-labels.for-aboxo, fprintf(), itoao) *

* CALLING MODULES: create-temp-box.info(, traverseboxes() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE : *

* ORDER OF: *

void
save arrow-info-of-abox(fp,tembox)
FILE *fp;
struct boxstruct *tem.box;
{
extern itoa0;
extern struct boxstruct *box;

struct text-line-struct *ICOM-labels;
char buf[DESCRIPTIONLINELENGTH+1];
int numberof.input = 0;
int numberof.output = 0;
int number.of.control = 0;
int number-of-mechanism = 0;

/.********* NAME ***********/

fprintf(fp,"confirmed(['.s',is,indata]).\n",

F-35

tem..box->name-text-.string);

/**********NUMBER ******

itoa(tem..box->number,buf);
fprintf(fp,"confirmed(['Xs' ,number-.is.XsJ) .\n",
tem..box->nane .text-.string,buf);
box =tem..box;

/*************INPUTS********/

ICaM-labels = (struct text-.line-.struct *)get-.labels-.forabox('I');
if (ICOM..labels -= NULL) f
fprintf(fp,"confirmed('Xs,input-is,null).\n",
tem-.box->name .text-string);

else{
while(ICOMjlabels !=NULL){
fprintf(fp,"confirmed(['s,input-.is,'%s']).\n",

tem-.box->nanie.text-.string, ICOM-labels->text-line);
ICOM-labels = ICOM-labels->next;
number-.of-.input += 1;
I

itoa(nj,-mher..of~input 1buf);
fprintf(fp, "confirmed(E'YXs', has..input..number, Ys) .\n",

tem-box->name text-string ,buf);

/****************OUTPUTS *************

ICOM-labels = (struct text-.line-.struct *)get-.labels-.foraboxQ');
if (ICOM-.labels == NULL) f
fprintf(fp,"confirmed(C'Y.s',output-is,null]) .\n",

tem..box->name.text.string);
I

else{
while(ICOM-labels != NULL){
fprintf(fp,"confirmed([%s,output-is,'Y s']).\n",

tem-.box->name text-string,ICOM-labels->text-line);
ICOM-labels = ICOM..labels->next;
nuxnber-.of...output += 1;

itoa(number.of-.output ,buf);
fprintf(fp,"confirmed([Y~s', has-.output-.number, 7.8]) \n",

tem-.box->name.text-.string, buf);

F-36

/*****************CONTROLS***********/

ICOM..labels = (struct text-.line-s.truct *)get..1abels..for.abox(IC');
if (ICOM-.labels == NULL) f
fprintf(fp."confirmed(['%s' ,control-is,null).\n",

tem-.box->name .text-.string);

I
else{
while(ICOM-.labels != NULL){
fprintf(fp,"confirmed(['Xs',control-is, 'Xsll).\n"

tem.box->name.text-.string,ICOM-.labels->text-line);
ICOM-labels = ICOM-.labels->next;
number.of-.control += 1;

itoa(number.of-.control ,buf);
fprintf(fp,"confirmed(['Xs', has-.control-number, %sJ) .\n",

tem-.box->name .text-.string,buf);

/**************MECHANISMS ***********/

ICOM-.labels = (struct text-ine-.struct *)get-abels-for..abox('M');
if (ICOM-.labels ==NULL) {
fprintf(fp,"confirmedCE'X.s' ,iechanism-is,null]).\n",

tem-.box->name text-.string);
I
else{
while(ICOM-labels != NULL){
fprintf(fp,"confirmed(E'Xs' ,mechanism-.is '7.s']) .\n",

tem..box->name.text.string,ICOM.labels->text-line);
ICOM-.labels = ICOI-labels->next;
number-.of-mechanism += 1;
I

itoa(number-.of-.mechanism ,buf);
fprintf(fp,"confirmed(['Y.s', has..mechanism..nwnber, %s]) .\n",

tem..box->nane .text-.string,buf);
I

return;

F-37

* DATE: 15 Feb 1990 *

* VERSION: 1.0 *

* NAME: createtemp-boxinfo() *

* MODULE NUMBER: *

* DESCRIPTION: *

* This module provides a means of creating the *

* temporary file, CHECKBOX.PRO, which contains a set of *

* predicate forms for an activity box. *

* ALGORITHM: *

* PASSED VARIABLES: found-box *

* RETURNS: None *

* GLOBAL VARIABLES USED: None *

* GLOVAL VARIABLES CHANGED: None *

* FILES READ: None *

* FILES WRITTEN: CHECKBOX.PRO *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: fopeno, put-messageo, disable-input-window(), *

* save-header-infoo, save-arrow-info-of-abox(), *

* fcloseo, printfo *

* CALLING MODULES: find.clicked.box() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

void
create-temp-box-info(found-box)
struct box-struct *foundbox;
{
extern put.message(),disableinput.windowo;
FILE *fp;

if((fp = fopen("CHECKBOX.PRO","w")) == NULL) {
put.message(l,"Unable to open the CHECKBOX.PRO file -- ABORT.");
disable-input-window();
}

else {
disable.input-window();
save.headerinfo(fp);

F-38

save- rrow-.info..of..abox(fp ,found-.box);
ifCf close(fp) != 0) printf("FILE CLOSE FAILED\n");

I
return;

F-39

/************* *** ****** ******* ********* *** **** ******* ******** ***

* DATE: 15 Feb 1990 *
• VERSION: 1.0 *

• NAME: find.clicked-box() *

• MODULE NUMBER: *

• DESCRIPTION: *

• This module provides a means of checking if there is a box *

* within the cordinate(x,y) clicked by the user mouse. *

* ALGORITHM: *

* PASSED VARIABLES: x,y *

* RETURNS: None *
* GLOBAL VARIABLES USED: box-rootnode *
* GLOVAL VARIABLES CHANGED: None *

* FILES READ: None *
* FILES WRITTEN: None *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: put-messageo, create.temp-box-infoo, *

• mywindow-seto, null.proc() *

* CALLING MODULES: check-button.foractivity() *

* AUTHOR: Intaek Kim *

• HISTORY: *
* ABSTRACT DATA TYPE: *

4 ORDER OF : *

void
find.clickedbox(x,y)
int x,y;
{
extern put.message(),my.window-set(),null-proco;
extern struct box-struct *box-rootnode;
struct box-struct *bbox;

bbox = box.rootnode;
while (bbox != NULL) {
if(x >= bbox->swcorner.x &k x <= bbox >swcorner.x + BOX-WIDTH &&

y >= bbox->swcorner.y - BOXHT kk y <= bbox->swcorner.y)
{
put-message(1,"Enter the prolog environment

using another window.");
createtempboxinfo(bbox);

F-40

iny..window.set (null-proc);
return;

bbox = bbox-)next;

put-message(l,"Box not found - Try again(ILl to select)");

return;

F-41

* DATE: 15 Feb 1990 *

* VERSION: 1.0 *

* NAME: check.button-foractivity() *

* MODULE NUMBER: *

* DESCRIPTION: *

* nThis module provides a means of checking the button clicked*
* by user mouse if the clicked button is right or left. *

* ALGORITHM: *

* PASSED VARIABLES: window, event, arg(Sun variable) *

* RETURNS: None *

* GLOBAL VARIABLES USED: window, event, arg *

* GLOVAL VARIABLES CHANGED: None *

* FILES READ: None *

* FILES WRITTEN: None *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: event-ido, find-clickedboxo, event.xo, *

* eventyo, my-window-seto, null.proc(, *

* put.message() *

* CALLING MODULES: checkactivity() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

void

check-button.foractivity(windowevent,arg)
Window window;
Event *event;
caddrt arg;
{

extern mywindow-seto;
extern putmessageo, null-proco;

/* Check for left or right button */
switch(event.id(event)) {

case MSLEFT:
if(eventis.up(event))

find.clicked.box(event-x(event),event.y(event));

F-42

break;

case MS-.RIGHT:
my-w.indow.set (null..proc);
put-.message(l,"ABORT -- Make another selection.");
break;

default:
break;

I
return;

F-43

DATE: 15 Feb 1990

* VERSION: 1.0 *

* NAME: check.activity() *

MODULE NUMBER: *

DESCRIPTION: *

*This module provides a means of finally producing a file *

* contained a set of predicate forms for an activity box. *

ALGORITHM: *

* PASSED VARIABLES: None *

* RETURNS: None *

* GLOBAL VARIABLES USED: header.rootnode, boxrootnode *

* GLOVAL VARIABLES CHANGED: None *

* FILES READ: None

* FILES WRITTEN: None

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: put-messageo, strcmpo, mymove-cursoro, *

* my.window.set 0 *

* CALLING MODULES: make.windows() *
* *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE : *

* ORDER OF: *

void

check-activity()
{

extern putmessage(, my-window-set), mymove-cursor(;
extern struct boxstruct *box-rootnode;
extern struct header-struct *headerrootnode;

if(boxrootnode == NULL) {
put-message(l,"FATAL: Can't check this empty diagram
-- Make another selection.");

return;
}

if(strcmp(header-rootnode->title.textstring,"") == 0) {
putmessage(l,"NO TITLE: Please enter the TITLE

using EDIT DGM and then RETRY!!!");
return;

F-44

I
my..move-.cursor(INIT-.LOC-X ,INIT-.LOC-Y);

my-.window-.set (check.buttonfor-activity);

put-.message(l,"Move cursor inside activity box

and click left button - Right to ABORT.");

return;

F-4 5

/ **

* DATE: 15 Feb 1990 *

* VERSION: 1.0 *

* NAME: create-tempboundary.info() *

* MODULE NUMBER: *

* DESCRIPTION: *

* This module provides a means of saving all information of *

* boundary arrows of the IDEFO diagram into the tempory *

* file CHECKBOUNDARY.PRO. *

* ALGORITHM: *

* PASSED VARIABLES: parentfile *

* RETURNS: None *

* GLOBAL VARIABLES USED: headerrootnode *

* GLOVAL VARIABLES CHANGED: None *

* FILES READ: parentfile *

* FILES WRITTEN: CHECKBOUNDARY.PRO *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: fopeno, put-messageo, disable-input-window() *

* getco, putco, fcloseo, searchboundary-infoo,*

, save-null-boundaryo, printf() *

* CALLING MODULES: check-parentboxfile() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

void

create-temp-boundary-info(parentfile)

char parentfile[];
{

extern put.message(),disableinput-windowo;

FILE *parentfp, *childfp;

extern struct header.struct *header-rootnode;

extern int number-of.boundaryinput,number-of-boundary.output;

extern int numberofboundary-control,number.of.boundarymechanism;

int ch;

number-of.boundary-input = 0;

number.of-boundary-output = 0;
number.of.boundary-control = 0;

F-46

number.of-boundary-mechanism = 0;
if((parentfp =foperi(parentfile,"r")) ==NULL 11

(childfp =fopen("CHECKBOUNDARY.PRO","IV')) ==NULL){

put-.message(l,"Unable to open the predicate file(s) -- ABORT");

disable-.input..indowo;

else{
disable..input-.windowo;
while((ch = getc(parentfp)) != EOF)
putc(ch,childfp);

fclose(parentfp);

search-.boundary-.info(childfp);
save-.null-boundary (childfp);
if(fclose(childfp) != 0) printf ("FILE CLOSE FAILED\n");

I
return;

F-47

* DATE: 15 Feb 1990 •

* VERSION: 1.0 •

* NAME: check-parent-boxfile() *
* MODULE NUMBER: *

* DESCRIPTION: *

* This module provides a means of checking if there is the *

* file which the user specifies in the current directory. *

* ALGORITHM: *

* PASSED VARIABLES: None *

* RETURNS: None *

* GLOBAL VARIABLES USED: None *

* GLOVAL VARIABLES CHANGED: None *

* FILES READ: None *

* FILES WRITTEN: None *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: strcpyo, panel-get-valueo, fix-inputo, *

* strcmpo, put.messageo, disableinput-window(), *

* strcato, check.filename(), *

* create-tempboundary.infoC) *

* CALLING MODULES: check-buttonfor-boundary() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE : *

* ORDER OF: *

checkparentbox-file()
{
extern put-messageo, disable.inputwindow(),check-filenameo;
extern my.movecursor(),my.window.set(),fix-inputo;
char name[FILENAMELENGTH + 1],name2[FILENAMELENGTH + 5];
int filetype.indicator;

strcpy(name,(char *)panel-get-value(input.item));
fix-input(name);
if(strcmp(name,"") -- 0) {
put-message(1,"ABORT: No file name received
--Make another selection.");
disable-input-windowo;
return(PANELNONE);

F-48

}
strcpy (name2 ,name);
strcat(name2, ".pro");
file-typeindicator = check.filename(name2);
switch (file.type-indicator) {

case -1:
disable_.input-window();
put-message(1,"ABORT: File does not exist
--Make another selection.");
break;

case -3:
disable_ inputwindowo;

put-message(1,"ABORT: File is a directory
-- Make another selection.");
break;

case -2: /* READ ONLY */
case 0: /* READ/WRITE..
putmessage(1,"Enter prolog environment using another window.");
create-temp.boundaryinfo (name2);
break;

default:
put-message(1,"Unknown condition -- Make another selection.");
disable-input-windowo;
break;

return(PANELNONE);

F-49

* DATE: 15 Feb 1990 *

* VERSION: 1.0 *

* NAME: checkbuttonforboundary() *

* MODULE NUMBER: *

* DESCRIPTION: *

* This module provides a means of conforming if the user *

* would like to be continue to check IDEFO syntax for the *

* boundary arrows in any IDEFO diagram. *

* ALGORITHM: *

* PASSED VARIABLES: window, event, arg(Sun variables) *

* RETURNS: None *

* GLOBAL VARIABLES USED: None *

* GLOVAL VARIABLES CHANGED: None *

* FILES READ: None *

* FILES WRITTEN: None *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: event-isupo, event-ido, enable.input.window(),*
* panelseto, checkparentboxfileo, *

* put.messageo, my-window-seto, null-proc() *

* CALLING MODULES: check.boundary() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

void
check-button-for-boundary(window,event,arg)
Window window;

Event *event;
caddr-t arg;

{

extern put.message(),enable-input.window(),my-window-seto;
extern null-proco;

if(event-isup(event)) return;

switch event.id(event)
{

case MSLEFT:

F-50

enable-.irput-.windowO);
panel-set(input-item,

PANEL.VALUE-.STORED..LENGTH ,FILE-.NAME-.LENGTH,
PANEL-.NOTIFY-PROC, check.parent.box.file,
0);

put-.message(l,"Enter the predicate file NAME
with parent box and hit <Return>.");
break;

case MS..RIGHT:
my-.window-.set (null.proc);
put-.message(1,"OPERATION ABORTED -- Make another selection.");
break;

default: break;

return;

F- 51

* *

* DATE: 15 Feb 1990 *

* VERSION: 1.0 *
* *

* NAME: check.boundary() *

* MODULE NUMBER: *

* DESCRIPTION: *

* This module provides a means of producing all information *

* of a set of predicate forms of the boundary arrows in the *

* IDEFO diagram so as to check IDEFO syntax of boundary *

* arrows.

* ALGORITHM: *

* PASSED VARIABLES: None *

* RETURNS: None *

* GLOBAL VARIABLES USED: healer-rootnode,linerootnode *

* GLOVAL VARIABLES CHANGED: None *

* FILES READ: None *

* FILES WRITTEN: None *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: disable-input-window(), put-messageo, strcmpo, *

* my-movecursoro, mywindow.set() *

* CALLING MODULES: make.windows() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE : *

* ORDER OF: *

void

check-boundary(0
{
extern put.message(),my-window-set(;
extern my.move.cursor(),disable-input-window(;
extern struct box-struct *box-rootnode;
extern etruct line-struct *line-rootnode;
extern struct header-struct *header-rootnode;

if(box-rootnode == NULL) {
disable-input-window(;
put-message(l,"FATAL: Can't check this empty diagram
-- Make another selection.");

return;

F-52

if(line-.rootnode == NULL){
put-.message(l,"FATAL: Can't check this diagram

-- Make another selection.");
disable-.input-iindowo;
return;
I

if(strcmp(header-.rootnode->title.text.string,"") 0) {)
put-.message(l,"NQ TITLE: Please enter the TITLE using EDIT DGM
and then RETRY!!!");
disable-.input-.windowo;
return;

I
put-.message(l,"CHECK BOUNDARY ARROW : ILI to check - IRI to ABORT");

my-.window-.set (check-.button..for-.bouxidary);
return;

F-53

* DATE: 15 Feb 1990 •

* VERSION: 1.0 *

• NAME: save-null-boundary() *

• MODULE NUMBER: *

* DESCRIPTION: *

• This module provides a means of saving the information *
• which contains that there is no boundary arrow in *

• accordance with ICOM. *

* ALGORITHM: *

* PASSED VARIABLES: fp(file pointer) *

• RETURNS: None •
• GLOBAL VARIABLES USED: number-of-boundary-input, *

* numberofboundaryoutput, *

• number-of-boundarycontrol, *

* number-of.boundary-mechanism *

* GLOVAL VARIABLES CHANGED: None *

* FILES READ: None *

• FILES WRITTEN: fp *

* HARDWARE INPUT: None *

• HARDWARE OUTPUT: None *

* MODULES CALLED: fprintf(0, itoa() *

• CALLING MODULES: create.temp.boundary.info() *

* AUTHOR: Intaek Rim *

• HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF *

savenull-boundary(fp)
FILE *fp;
{
extern int number.of-boundary-input,number-of.boundary-output;
extern int number-of-boundary.control,number-of-boundarymechanism;
extern itoa);
char buf[DESCRIPTIONLINELENGTH+1];

if (number.of.boundary.input == 0)
fprintf(fp,"confirmed([boundary-input, is, null]).\n");

if (number-of.boundary.output == 0)
fprintf(fp,"confirmed([boundaryoutput, is, null]).\n");

if (numberof.boundary.control == 0)

F-54

fprintf(fp,'confirmed(Cboundary-control, is, null]) .\nl);
if (number-.of..boundary-.mechanism ==0)

fprintf(fp,"confirmed([boundary-mechanism, is, null]) .\n");
itoa(number-.of-.boundary..input ,buf);
fprintf(fp,"confirmed(boundary-.input, has-.number, .s]) .\n" ,buf);
itoa(nmber.of-boundary-.output ,buf);
fprintf (fp, "confirmed(rboundary-.output, has-.number, Xs]).\n" ,buf);
itoa(number-.of-boundary-.control ,buf);
fprintf(fp,"confirmed([boundary.control, has-.number, .s]) .\n" ,buf);
itoa(nmber.of-.boundary-.mechanism ,buf);
fprintf(fp,"confirmed(boundary-.mechanism, has-.numnber, Ys]).\n" ,buf);
return(MYTRUE);

F-55

/***

* DATE: 15 Feb 1990 *

* VERSION: 1.0 *

* NAME: searchNLR-boundary-line-info() *

* MODULE NUMBER: *

* DESCRIPTION: *

* This module provides a means of working through the *

* tree of line structure in left and right direction. *

* ALGORITHM: *

* PASSED VARIABLES: line-info, fp *

* RETURNS: None *

* GLOBAL VARIABLES USED: None *

* GLOVAL VARIABLES CHANGED: None *

* FILES READ: None *

* FILES WRITTEN: None *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: save-boundary-line-infoo, *

* searchNLR-boundary-line-info() *

* CALLING MODULES: search.boundaryinfo() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF : *

void

searchNLR-boundary-line.info(line.info,fp)
struct line-struct *line-info;

FILE *fp;
{
extern int number-of-boundary-input,number-of-boundary-output;

extern int number-of.boundary-control,number-of.boundary-mechanism;

if(line-info == NULL) return;

else
{
save-boundary-line.info(line-info,fp);

searchNLR-boundary-lineinfo(line.info->left,fp);
searchNLR-boundary-line.info(lineinfo->right,fp);

}
return;

F-56

F- 57

* DATE: 15 Feb 1990 *

* VERSION: 1.0 *

* NAME: search-boundary-info() *

* MODULE NUMBER: *

* DESCRIPTION: *

* This module provides a means of working through the *

* tree of the line structure in next direction. *

* ALGORITHM: *

* PASSED VARIABLES: fp *
* *

* RETURNS: None *

* GLOBAL VARIABLES USED: line-rootnode *

* GLOVAL VARIABLES CHANGED: None *

* FILES READ: None *

* FILES WRITTEN: None *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: fprintf(), searchNLRboundary-lineinfo() *
* CALLING MODULES: create-temp-boundary-info() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

searchboundary-info(fp)

FILE *fp;
{
extern struct line-struct *line-rootnode;

struct line-struct *lineinfo;

extern int numberofboundary-input,number-of-boundary.output;

extern int number.of.boundarycontrol,number.ofboundary.mechanism;

fprintf(fp,"confirmed([childtitle, is, '/.s]).\n",

header.rootnode->title.textstring);
line-info = line-rootnode;
while(lineinfo != NULL)

{
searchNLR-boundary-line-info(line-info,fp);

line-info = line-info->next;
}

return(MYTRUE);

F-58

F-59

* DATE : 4 Feb 1990 *

* VERSION : 1.0 *

* NAME : save-boundary-lineinfo() *

* MODULE NUMBER: *

* DESCRIPTION: *

* This module is to save the information of the boundary *

* arrows in the IDEFO diagram. *

* ALGORITHM: *

* PASSED VARIABLES : line-info, fp (File Pointer) *

* RETURNS : None *

* GLOBAL VARIABLES USED : None *

* GLOBAL VARIABLES CHANGED : None *

* FILES READ : None *

* FILES WRITTEN: fp *

* HARDWARE INPUT None *

* HARDWARE OUTPUT : None *

* MODULES CALLED : itoao, fprintf() *

* CALLING MODULES : searchNLR-boundary-line-info() *

* AUTHOR : Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

save-boundary-line-info(line.info,fp)

struct line-struct *line-info;

FILE *fp;
{

extern itoao;
extern int number-of-boundary.input,number-ofboundary.output;

extern int number-ofboundary.control,numberofboundarymechanism;
char buf[DESCRIPTIONLINELENGTH+I];

switch(lineinfo->startICOM[OJ)
{

case 'I':

number-of-boundary-input += 1;

itoa(nunber-of.boundary.input,buf);

fprintf(fp,"confirmed([boundaryinputs, is, '7s']).\n",

buf,line-info->label.text-string);

F-60

break;

case PC):
number-.of-.boundary-.control += 1;
itoa~number-.of-.boundary-.control ,buf);
fprintf(fp, 'confirmed(Eboundary-.control%s, is, '%s'3).\n",

buf,line-.info->label.text-.string);
break;

case 'M':
nuxnber-.of-.boundary-.mechaxiism += 1;
itoa(number.of-boundary-mechanism ,buf)o;
fprintf(fp,"confirmed(Eboundary-mechanism%s, is, 's'l).\n",

buf ,line-i.nfo->label.text-.string);
break;

default:
if (line.info->endICOMCO] -'0')

number-.of..boundary..output += 1;
itoa(number-.of-boundary-output ,buf);
fprintf(fp,"confirmed([boundary..output%s, is, '%s'J).\n"1,

bu,line-.info->labe. text-..tring);
break;

return(MYTRUE);

F- 61

/ ******************* ***** *** *** ****** ** ******* ************** ********

* DATE : 2 Feb 1990 *

* VERSION : 1.0 *

* NAME : saveheader-info() *

* MODULE NUMBER: *

* DESCRIPTION: *

* This module is to save the information of "NODE" and *

* "TITLE" in the IDEFO diagram. *

* ALGORITHM: *

* PASSED VARIABLES : fp (File pointer) *

* RETURNS : None *

* GLOBAL VARIABLES USED : header-rootnode *

* GLOBAL VARIABLES CHANGED : None *

* FILES READ : None *

* FILES WRITTEN : fp *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT : None *

* MODULES CALLED : fprintf() *

* CALLING MODULES : storepredicates() *

* AUTHOR : Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

save-header-info(fp)

FILE *fp;
{
extern putmessage(),disable-inputwindow();
extern struct header-struct *header-rootnode;

fprintf(fp,"confirrned([title, is, 'Xs']).\n",

header.rootnode->title.textstring);
fprintf(fp,"confirmed(Enode, is, '%s']).\n",

header-rootnode->node.text.string);

rel- rn(MYTRUE);
}

F-62

* DATE: 20 Feb 1990 *

* VERSIOIN: 1.0 *

* NAME: traverse-boxes() *

* MODULE NUMBER: *

* DESCRIPTION: *

* This module provides a means of traversing all the *

* activity boxes in a diagram and of passing the *

, information of each box to store-diagramo. *

* ALGORITHM: *

* PASSED VARIABLES: fp *

* RETURNS: None *

* GLOBAL VARIABLES USED: box-rootnode *

* GLOBAL VARIABLES CHANGED: None *

* FILES READ: None *

* FILES WRITTEN: None *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: savearrow-info.of.abox() *

* CALLING MODULES: store.predicates() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

void
traverse-boxes(fp)
FILE *fp;
{
extern struct box-struct *box-rootnode;
struct box-struct *temp-box;

temp-box = box-rootnode;
while(tempbox != NULL)
{
save-arrow-info.of-abox(fp,temp.box);
temp.box = temp.box->next;
}

return;
}

F-63

* DATE: 15 Feb 1990 *

* VERSION: 1.0 *

* NAME: storepredicates() *

* MODULE NUMBER: *

* DESCRIPTION: *

* This module provides a means of saving all information of *

*arrows(ICOM) attatched on the activity boxes in the IDEFO

* diagram. *

* ALGORITHM: *

* PASSED VARIABLES: file-name *

* RETURNS: None *

* GLOBAL VARIABLES USED: None *

* GLOVAL VARIABLES CHANGED: None *

* FILES READ: None *

* FILES WRITTEN: None *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: fopeno, put-messageo, disable-input-windowo, *

* save-header-infoo, traverse-boxeso, fclose() *

* CALLING MODULES: overwritepredictes() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE : *

* ORDER OF: *

void
storepredicates(filename)

char file-name[];

extern put.message(),disable-inputwindowo;
FILE *fp;

if ((fp = fopen(file.name,"w")) == NULL) {
put.message(l,"Unable to open the file for predicates

-- ABORT.");

disable.inputwindowo;
}

else {
disable.input.window();

save.header-info(fp);

F-64

traverse-.boxes(fp);
if(fclose(fp) !=0) printf("FILE CLOSE FAILED\n");
I

return;

F-65

* DATE: 15 Feb 1990 *

* VERSION: 1.0 *

* NAME: overwrite.predicates() *

* MODULE NUMBER: *

* DESCRIPTION: *

* This module provides a means of overwriting the predicate *

* forms into the existing flie which is specified by the user*

* ALGORITHM: *

* PASSED VARIABLES: window, event, arg(Sun variables) *

RETURNS: None

* GLOBAL VARIABLES USED: last-file-name *

* GLOVAL VARIABLES CHANGED: None *

* FILES READ: None *

* FILES WRITTEN: file pointer passed to a .pro file *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: event.is-upo, event-ido, strcpyo, *

* store-predicateso, put-message(), null-proco, *

* my.windowseto) *

* CALLING MODULES: get-filename-for-predicates() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE : *

* ORDER OF: *

void

overwrite-predicates(window,event,arg)
Window window;

Event *event;

caddrt arg;
{
extern null-proco, putmessage(),my-window.seto;
char file-name[FILENAMELENGTH + 5];

if (!event-is.up(event)) return;
switch(eventid(event))
{
case HSLEFT:

strcpy(filename, last.filename);
store.predicates(file-name);

F-66

put-message(l,"OVERWRITE DONE -- Make another selection.");
my-window-set(null-proc);
break;

case MSRIGHT:
my-window-set (null-proc);
putmoessage(l,"ABORT overwrite -- Make another selection.");
break;
}

return;
F

F-67

* DATE: 10 Jan 1990 •
* VERSION: 1.0 *

* NAME: getfilename.forpredicatesC) *

* MODULE NUMBER: *

* DESCRIPTION: *

* The purpose of this module is to get the file name from the *

* user in which to save the predicates file. *

* ALGORITHM: *

* PASSED VARIABLES: None *

* RETURNS: PANEL-NONE (Sunview variable) *

* GLOBAL VARIABLES USED: None *

* GLOBAL VARIABLES CHANGED: None *

* FILES READ: None *

* FILES WRITTEN: None *

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: put.message(),fixinput(),disable-input-window(),*

* check-filename(),my.windowset(),stordicates(, *

* my-move-cursoro; *

* CALLING MODULES: save-predicates() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

Panel-setting
get.filename.forpredicateso)
{
extern put.message(),disable-inputwindowo;

extern fix-inputo, my.window.set(),my-move.cursor);

extern check-filenameo;

char name[FILENAMELENGTH+1J,name2[FILENAMELENGTH+51;

int file.type-indicator;

/* get the user input(file name) */
strcpy(name,(char *)panel-get-value(input-item));

fix-input(name); /* Remove blanks and replace \n to \0 */

if(strcmp(name, "")=0)
{
put.message(1,"OPERATION ABORTED -- NO FILE NAME RECEIVED

F-68

-Make another selection");
disable-.input.windowO);
return(PANEL.NONE);

strcpy(nanie2,name);
strcat (name2, ".pro");
/* Checks file name of "name2" is what type of file. *
file-.type-.indicator = check-.filename(name2);

su itchCf ile-.type..indicator)

case -1:
store-.predicates(name2);
put-.message(l,"SAVE DONE -- Make another selection.");
break;
case -2:
disable-.input-.windowo;
put-.message(1,"Can't overwrite file -- READ ONLY

-- Make another selection.");
break;

case -3!
disable.input-windowO);
put-message(l,"File is a DIRECTORY -- Make another selection.");
break;

case 0:
put..message(l,"FILE EXISTS - ILI to overwrite, - IRI to ABORT.");
my-mnove-.cursor(INITLOC-XINIT-.LOC-.Y);
strcpy(last-.file..naxne,name2);
my-.window-.set(overwrite..predicates);
break;
default:
put-.message(l,"Unknown condition -- Make another selection");
disable-.input.windowo;
break;

return(PANEL-.NONE);

F-69

* DATE: 10 Jan 1990 *

* VERSION: 1.0 *

* NAME: save.predicates() *

* MODULE NUMBER: *

DESCRIPTION: *

* This module provides a means of asking user for continuing to *

* save a predicate file(.pro) or to abort this function. *

* ALGORITHM: *

PASSED VARIABLES: *

* GLOBAL VARIABLES USED: *boxrootnode, *header-rootnode *

* GLOBAL VARIABLES CHANGED:None *

* FILES READ: *

* FILES WRITTEN: *

* HARDWARE INPUT: *

* HARDWARE OUTPUT: *

* MODULES CALLED: get-filename-for.predicates() *

* CALLING MODULES: make.windows() *

* AUTHOR: Intaek Kim *

* HISTORY: *

* ABSTRACT DATA TYPE: *

* ORDER OF: *

void

save.predicates()
{
extern put-messageo, enable-inputwindowo;

extern disableinputwindowo;

extern struct box-struct *boxrootnode;

extern struct header-struct *header-rootnode;

if(box-rootnode == NULL) {
put-message(1,"FATAL: Can't save this empty diagram

-- Make another selection.");

disable.inputwindowo;

return;

}
if(strcmp(header-rootnode->title.text-string,"") == 0) {
disable-input.windowo;

putmessage(1,"NO TITLE: Please enter the TITLE

F-70

using EDIT DGM and then RETRY!!");
return;
I

enable-.input-.windowO);

panel-set(input-item,
PANEL-VALUE-STORED-LENGTH ,FILE-.NAME-.LENGTH,
PANEL.NOTIFY-.PROC, get..filename-.for-.predicates,

0);
put-.message(l,"Enter the file name and hit <Return>.");

return;

F-71

IDEFo Syntax Expert System

This section presents the source code documentations for the IDEFo Syntax

Expert System and contains the inference engine(ISES) and two rule bases: Activity

IDEFo Syntax Rules and Boundary IDEF0 Syntax Rules.

F-72

Inference Engine

* DATE: 25 Feb. 1990 *

* VERSION: 1.1 *

* NAME: BC3 *
* DESCRIPTION: The purpose of this module is to provide an *

* inference engine for checking IDEFO syntax. *

* BC3 provides a means of a shell for backward *

* chaining control strategy. *

* OPERATING SYSTEM: UNIX 4.3 *

* LANGUAGE: Quintus Prolog *

* CONTENTS: * *

* AUTHOR: DR. Frank M. Brown *

* HISTORY: Version 1.0 - MS-DOS version(DR. Frank M. Brown) *

* Version 1.1 - UNIX 4.3 version(Intaek Kim) *

BC3
/* *

A shell for backward-chaining expert systems.
l* *

1* Each item of knowledge is represented by a triple, i.e., */
** a three-element list of the form EObject,Attribute,Value]. */
1. .

1* An associated rule-base supplies the following data: */

/* 1. A goals-statement, in the form of a list of triples to */
/* be solved in sequence. The solved triples are printed *1

by the shell. */
/* 2. A collection of if-then rules for triples. */
/* 3. A collection of 'fact' triples, i.e., triples asserted *1
/* as known a priori. */
/* 4. A collection of 'askable' triples, indicating the forms */

of triples whose values may be obtained from the user. */
/* 5. A collection of 'keep' triples, indicating the form of */

the triples not to be erased from working memory at */
the beginning of a new session.

/* Each item of knowledge stored in working memory is of the */
[* form confirmed([Obj,Attr,Val]) or denied([ObjAttr,ValJ).

1. .1

/* To use the system, load BC3, load the appropriate rule- */

F-73

/* base and type 'start.' Because BC3's operator-defini- */
/* tions are used by the rule-bases, BC3 must load first. */

-, OPERATOR DEFINITIONS -------------------
1"**

/* The operators defined below enable the rules in the know- */

/* ledge-base to be expressed in a form more readable than */
/* the standard (prefix) form.
l* -- *

?- op(2 50, xfx, ::).
?- op(245, xfx, then).

?- op(240, fx, if).

?- op(235, xfx, derived-from).
?- op(230, xfy, or).

?- op(225, xfy, and).
?- op(2 20, fy, not).

S-----------START --------------------------
l* "1

/* The procedure 'start' begins by erasing from working mem- */
/* ory all 'confirmed' and 'denied' clauses, except those .1

/* clauses protected by 'keep' from erasure. The list of .1

/* goal-triples is then read from the rule-base and solved in */
/* turn by 'solve'. A trace is maintained of the back- */
/* chaining search-tree generated in solving the goals. When */

/* the last of the goal-triples is solved, the values of all *1
/* goals, except those solved by asking the user directly, */
/* are displayed; the trace is also displayed, if requested, */
/* as a "how" explanation of the solution.

* --

eraseworking-memory :-
(confirmed(Triple), 1* Erase all working-mem- */
not(keep::Triple), /* ory elements not pro- */
retract(confirmed(Triple)) /* tected by 'keep' state-*/

/* ments in the knowledge-*/

denied(Triple), /* base. */
not(keep:;Triple),
retract(denied(Triple)) j,

fail.

F-74

erase-working.memory.

start
askabout-verbose,
fail.

start -
askaboutchecking-type,
fail.

start :-
retractall(whytrace(_)), /* Erase the "why" trace. */
goals:: Goals, /* Find the goal-triples, */
prefix(Goals,PrefixedGoals), /* prefix each of them */
show-head-message, /* with the word 'goal', */
solve(Goals,[],PartTrace), /* satisfy all of the *1
!,nl, /* goals and then put the */
append(PrefixedGoals,PartTrace,Trace),

/* list of goals at the */
/* front of the "how"

ask-about-trace(Trace), /* trace. Supply a "how" */
askabout.saving-workingmemory, /* explanation on request.*/
erase-workingmemory,
start-message.

start :- /* If all triples can't */
nl, /* be solved, announce it.*/
write('I can''t solve this problem.'),nl,
start-message.

/* ----------- SOLVE -------------------------

I* The predicate 'solve(Goals,Trace,New.trace)' means that */
/* Goals is a list of goals (expressed as triples), and that */
/* Trace and New-trace are, respectively, the trace-lists be- */
/* and after solution of the goal at the head of the goal- */
/* list. The procedure 'solve' solves each of the goals in */
/* turn. The first step in solving a goal is to erase the *1
/* "why" trace and to initialize it with that goal. Thus each *1
/* goal is solved with a separate "why" trace. As each rule *1
/* is encountered in descending through the search-tree for a
/* given goal, that rule is added to the front of the "why" */
/* trace.
/*F*7

F- 75

/* * -

solve([],Trace,Trace).

solve([GoallOthers],Trace,NewTrace)
retractall(why-trace(_)), /* Initialize the "why" */
asserta(whytrace([Egoal::Goal])), /* trace.
is.known(Goal,Trace,Trace1),
C confirmed(Goal),! /* Write each triple as

/* it's solved, but don't */
nl,writetriple(Goal),nl), /* write a triple that's */

solve(OthersTracel,NewTrace). /* been told explicitly *1
/* by the user. */

write-triple([Obj,Attr,ValJ) :-
writelist([Obj,' ',Attr,' ',Val,'.']).

/* --------- IS-KNOWN ------------------------
I* */

/* The 'is-known' procedure maintains a trace of the path of */
/* the solution-tree leading to the triple currently under */
/* consideration. 'isknown(Triple,Trace,NewTrace)' means */
/* that if reasoning to a certain point has been recorded in */
/* the list 'Trace', then the additional triple 'Triple' is */
/* known via reasoning recorded by the list 'NewTrace'. */
* -- *I

/* A triple is not known if it has been denied by the user. */

is-known(Triple,Trace,Trace) -

denied(Triple),

fail.

/* A triple is known if it is already logged in the trace. */

is-known([O,A,V],Trace,[in-trace::[Tag,[O,A,V]] ITrace])
member(Tag: :[O,A,V] ,Trace),
Tag \== confirmed-not,

/* A triple is known if it has been confirmed by the user. */

is-known(Triple,Trace,[was.told::TriplelTrace)-

F-76

confirmed(Triple).

/* A triple is known if it is a fact in the rule-base.

is-known(Triple,Trace,[fact::TriplelTracej)
fact:: Triple.

/* A triple [X,P,Y] is known if the Prolog goal P(XY) suc-
/* ceeds, either because P is a built-in predicate, or because */
/* the rule-base has prolog-code defining P. The triple
/* [2,member,[1,2]], for example, is converted into the goal */
/* member(2,'1,2]), which is then executed by Prolog. To keep */
/* non-Prolog-programmers out of trouble, the triple [X,is,YJ */
/* is trapped so that it will not be executed as an arithmetic */
/* statement. The triple [X,:=,Y] is interpreted as Prolog's */
/* arithmetic or assignment goal, X is Y. */

/, */

/* This kind of triple, which runs off and does a computation, */
/* is called a "procedural attachment", or "demon." */

is-known([Obj,Attr,Valj,Trace,[solved::[Qbj,Attr,Val]lTrace])
atom(Attr), /* Attr must be a legal functor. */
(
Attr :, !,

Obj is Val /* Interpret ':=' as Prolog's 'is'. */

not (check-reserved-words(Attr)),
/* Interpret everything else, except */

T =.. [Attr,Obj,Val],/* reserved words for rule-base, as a
/* functor on a two-place

T, I /* predicate to be solved as a goal. */

/* A triple is known if it is the head of a rule and the con-
/* ditions of the rule are satisfied. We put a rule that we
/* encounter at the head of the "why" trace, erasing any du- */
/* plicates of the rule that are already in the "why" trace. */
/* The "why" trace is maintained in the database, in a clause */
/* of the form 'why-trace(<List of goals and rules>)'. This */
/* differs from the "how" trace, which is handed as an argu- */
/* ment from goal to goal.

is-known(TripleTrace,[was-proved::[TripleRule]ITrace]) "-
member(Rule:: Triple derived-from _Conds,Trace),

F-77

is-.known(Trpl,Trc, [Rule:: Trpl derived-.from CondslTrcl)
Rule:: if Conds then Trpl,
Cverbose,
writelist(['Trying ', Rule, 1:: ', Trpl]),nl

not verbose),
why-.trace (WhyTrace),
remove (Rule:: Trpl derived-.from Conds ,WhyTrace ,Part Why),
append([Rule:: Trpl derived-.from Conds) ,Part Why ,NewWhy),
retract (why-.trace(-j),
asserta(why-.trace(NewWhy)),
is...known(Conds,Trc,Trcl),
Cverbose,
writelist(['Proved 1, Rule, 1:: ', Trpl]),nl

not verbose)

/* A condition involving "and", "or", or "not" is known if its *
/* parts are known in suitable combinations. *

is-.known(Triplesl and Triples2,Trace,Trace2)
is-.known(Triplesl ,Trace ,Tracel),
is-.known(Triples2 ,Tracel ,Trace2).

is-.known(Triplesl or -.Triples2,Trace,Tracel)
is..known(Triplesl ,Trace ,Tracel).

is-.knownC.Triplesl or Triples2,Trace,Trace2)
is-.known(Triples2,Trace,Trace2).

is..known(not Triple,Trace, [confirmed-not: :TriplelTrace])
not is..known(TripleTrace,-.Tracel).

/* A triple is known if (a) the rule-base classifies it as
/* "askable" and if (b) the user confirms it. The user may *
/* request a "why" explanation before responding to the ques- *
/* tion.

is..known([a,A,VJ ,Trace, [was-.told:: [O,A,VJ (Trace]):-
askable:: [0,A,-]J, /* 'ask-.about' causes the side-effect *
ask-.about([O,A,V]), /* of confirming or denying EO,A,V) in *

/* working memory. The clause succeeds *
confirmedC[D,A,V]). /* if the triple was confirmed. *

F-78

/- ASK-ABOUT --

/* If the user is asked about a triple [0,A,VJ in which V is */
/* a variable, we assume that only one value of V is allowed */
/* for that triple. The askable-fact in the rule-base is to */
/* have the form 'askable::[O,A,LegalValsJ',where LegalVals is */
/* either a string describing legal values or a list enumer-
/* ating such values. When the user supplies a legal value for */
/* V, the triple is confirmed in working memory.

askabout([Dbj,Attr,ValJ)
var(Val),

not confirmed([Obj,Attr,_]),
nl, writelist([Obj,' ',Attr,'? ']),nl,
askable:: [Obj,Attr,LegalValues],
write('Legal values: '), write(LegalValues), nl,
write('> '), read(Reply),
(/* If the user replies 'why.', give him an explanation and */

/* ask again for a value.
C

means(Reply,why),
explainwhy([Obj,Attr,Val]),

ask.about([Obj,Attr,Val])
)

/* If LegalValues is a list, check that the reply is in */
/* the list. */
C
atom(LegalValues) /* Leg.lValues is a string.*/

LegalValues = D_], /* LegalValues is a list. */
member(Reply,LegalValues)

assertz(confirmed([Obj,Attr,Reply]))

write('Please re-enter your reply.'),nl,
ask.about([Obj,Attr,Val])

/* If we get to this clause, the user is being asked to reply */
/* yes or no concerning a triple [0,A,V] in which V is not a

F-79

/* variable. For given 0 and V, working memory may store more
/* than one triple, confirmed or denied, having different val- */
/* ues of V.

ask.about([Obj,Attr,Val])
not confirmed([Obj,Attr,Vall),
not denied([Obj,Attr,ValJ),
nl,
writelist([Obj,' ',Attr,' ',Val,'? (yes./no./why.)1]),
nl,write('> '),read(Reply),
(
means(Reply,yes),
assertz(confirmed([Dbj,Attr,Val])),

means(Reply,no),
assertz(denied([Obj,Attr,V .])),

means (Reply, why),
explain.why([Obj ,Attr,Val]),

ask-about([Obj,Attr,Val])

write('Please re-enter your reply.'),nl,
ask-about([Obj,Attr,Val])

/ ASK ABOUT VERBOSE ----------------

ask-about-verbose :-
retractall(verbose),
write(' Question: Do you want verbose operation(y./n.)? '),

read(Reply),nl,nl,
means(Reply,yes),

assert(verbose).

/* ------------ ASK ABOUT CHECKING TYPE -----------------

ask-about-checking-type :-
write(' Question:
Do you wish to check ACTIVITY BOX, BOUNDARY ARROWS '),nl,
write(' or to have HELP MESSAGES ?'),nl,nl,
write(' To check ACTIVITY BOX -> Enter a.'),nl,
write(' To check BOUNDARY ARROWS -> Enter b.),nl,
write(' To have HELP MESSAGE -> Enter h.'),nl,

F-80

write('Choice

read(Reply),nl,

((Reply == a,
load-sarule('ACTIVITYSARULE.PRO'),

load.working.memory('CHECKBOX.PRO'),
B)

(Reply == b,

loadsarule('BOUNDARYSARULE.PRO'),
load.working.memory('CHECKBOUNDARY.PRO'),
')

C Reply == h,
help-messages,

ask-about-checking.type)

(write(' Please re-enter your choice!!!!'),nl,nl,

ask-aboutcheckingtype)

/* - ASK ABOUT TRACE ---------------------

ask-about-trace(Trace) -

nl,nl,

write(' Question: Do you wish to see how this answer '), nl,

write(' was arrived at(y./n.)? '),

read(Reply),

Cmeans(Reply,yes), !,

write-trace(Trace)

true).

/* -ASK ABOUT SAVING WORKING MEMORY -/

ask-aboutsaving-working-memory :- nl,
write('/*****************!!! WORNING ************************/'),n**

write('/* After this session, all working memory elements will */'),nl,

write('/* be erased except for elements being protected by */'),nl,
write('/* keep statements in the knowledge base. */'),nl,
write('/**/') ,nl,

nl,
write(' Question: Do you wish to save the current working memory'),nl,

write('in a file(y./n.)? '),

read(Reply),nl,

F-81

Cmeans(Reply,yes),

save..working.memory,
eras e-.working-.memory,

erase-.working..memory)

/* ------------------------- EXPLAIN-.WHY ------------------------ /

explain-.why(Triple) :-
ihy-.trace(WhyTrace),
write('Because::'),nl,
justify(Triple ,WhyTrace).

justify(Triple ,WhyTrace) :-
member (goal:: a, WhyTrace),
Triple = Goal,
writelist(E'This will satisfy the goal ',Goal]),nl,
ni,

justify(Triple ,WhyTrace)
znember(Rule: :Iead derived-.from Cs,WhyTrace),
Camong(Triple,Cs),
writelistC['I can use ',Triple]),nl

among(not Triple,Cs),
writelist(['I can use NOT ',Triple]),nl

remove(Rule: :Head derived-.from Cs,WhyTrace,NewTrace),
list-.known-.triples(Cs),
writelist(E' to help satisfy ',Rule,':: ',Head]),nl,nl,
just ify (Head ,NewTrace).

list..known-.triples (Cs):-
azong(Triple,Cs),

confirmed(Triple)

fact:: Triple

writelist([' knowing 1,Triplel),nl,
fail.

list-.known.triples(-j.

among(Triple,Conditions):-
Triple - Conditions.

F-82

among(Triple, FirstTriple and OtherConditions)
Triple = FirstTriple

among(Til,OtherConditions).
among(Triple, FirstTriple or OtherConditions)
Triple = FirstTriple

among(Triple ,OtherConditions).

why :-/* Diagnostic utilities for
why-.trace(Trace), /* the why-trace.
write-.trace(Trace).

list-.why :
why-.trace(Trace),
member(M,Trace),
write(M) ,nl,nl,
fail.

why-.candidates
why..trace (Trace),
member(.Rule:: Head derived-.from Cs,Trace),
among(TripJle,Cs),
write('Head = ')l,write(Head),nl,
write(QTriple ='),write(Triple) ,nl,nl,
fail.

/---------------- WRITE..TRACE-----------------------

write-.trace(O[)
nl.

write-.trace([Tag::EO,A,V]IlRest)
(Tag goal, Iwrite('GOAL:: '

Tag ==fact, !,write('FACT:: '

Tag =:solved, !,write('SOLVED:: ')

Tag ==was-.told, !,writeC'TDLD:: ')

Tag ==confirmed-.not, !, write('CONTRADICTED:: '

write([O,A,Vl),nl,
write-trace(Rest).

F-83

write-.trace([in-.trace::[Tag,Triple] IRest])

write(&KNOWN:: '),write(Tag),writef(':: '),write(Triple),nl,
write..trace(Rest).

write-.trace([was-.proved::[Triple,Rule] Iaest])
vrite&'PROVED:: '),vrite(Triple) ,write(' using '),vrite(Rule) ,nl,
write-.trace(Rest).

write-trace([Rule:: Triple derived-from ConditionsiRest])
writelist([Rule,':: ',Triple,' Was Derived Fromil),nl,
write-.conditions(Conditions),
write-.trace (Rest).

write..trace([XIRest])
write(X) ,nl,
write..trace(Rest).

write-.conditions([X,Y,Z])
tab(8) ,write([X,Y,Z]) ,nl.

write-.conditions(not EX,Y,Z])
tab(4),write('NOT '),write([X,Y,Z)),nl.

write-.conditions([X,Y,Z] and Conditions)
tab(8),write([X,Y,Z)),write(' AND'),nl,
write..conditions(Conditions).

write-.conditions(not [X,Y,Z] and Conditions) I

t Lb(4).write('NOT '),write([X,Y,ZJ),write(' AND'),nl,
write..conditions(Conditions).

write-.conditions(Conditionsl and Conditions2)
write-.conditions(Conditionsl) .tab(8) ,vrite('AND') ,nl,
write-.conditions(Conditions2).

write-.conditions([X,Y,Z] or Conditions)
tab(8),write([X,Y,Z)),write(' OR'),nl,
write-.conditions(Conditions).

write-.conditions(Conditionsl or Conditions2)
write-.conditions(Conditionsl) ,tab(8) ,write('OR') ,nl,
write-conditions (Conditions2).

write-.conditions(not [X,Y,ZJ or Conditions)
tab(4),write('NOT ').write([X,Y,Z)),write(' OR'),nl,
write-.conditions(Conditions).

/------------------ FILE 1/0 -------------------------

get..filename(Filename) :-
write(QPlease supply a filename: 1),
read(Filename).

F-84

load..sarule(SAruleType)
retractallC.::.j.)
see(SAruleType),
load-.f ile,
seen.

load-.file
read(Tern),
load(Term).

load(end-of-.file)
load(Term) :
assertz(Term),
load-.file.

load..vorking.memory (CheckFileType)-
retractall(confirmed(-j),
retractall(denied(j),
see (CheckFileType),
load-.file,
seen.

save-.vorking..memory-
get..filenanie(Filename),
tell(Filename),
save-.wme,
told.

save-.wme
confirmed(Triple),
writeq(confirmed(Triple)),
write(' .) ,nl,
fail.

save-.wme
denied (Triple),
writeq(denied(Triple)),
write(' '),nl,
fail.

save..wme.

/------- ----- UTILITY PROCEDURES --------------------- /

check-.roserved-w.ords (Attr) :-

F-85

member(Attr, [' ',is,input-.is,has..input-.number,output.is,
has-.output-.nuber,control-is ,has-control-number,
mechanism-.is ,has-.mechanism..number ,number-is,
should..be ,has..number]).

show..head-.message -

nl,nl,
write(' /********IDEFO Syntax Messages********/)

ni.

help-.messages:-
reconsult('HELP.PRO').

not(Predicate) :
call(Predicate), Ifail.

not(-).

writelist C).
writelist([XIL])
write CX),
writelist(L).

member (X, [X I-).
member(X,[-IL])
member(X,L).

append([I , L,L) .
append([XILLM,[XIN])
appendCL,M,N).

remove(- C[I. [1).
removeCX, EXIL] ,M)

removeCX ,LN).
remove(X.[YILL,[YIM])
remove(X,LM).

prefix([] , [).
prefixCEGoallGoals] ,[goal: :GoallPrefixedGoals])

pref ix (Goals ,PrefixedGoals).

list..working..memory:-
confirmed(Triple),
write(confirmedCTriple)) ,write(' .') ,nl,
fail.

F-86

list-working-memory -

denied(Triple),
vrite(denied(Triple)),
write('.'),nl,

fail.
list_orkingmemory.

means(Reply,yes) :-
member(Reply, [y,yes]).

means(Reply,no) :-
member(Reply, En,no]).

means(Replywhy) :-
member(Reply,[why,w]).

start-message

write('/* */'),nl,
write('/* WELCOME TO IDEFO SYNTAX EXPERT SYSTEMS */'),nl,
write('/* */'),nl,

write('/* I.Type start. to begin a new session. */,),nl,
write('/* */'),nl,

write('/* II. Answer all questions using lower case,ending with*/'),nl,
write('/* a period. */'),nl,
write('/* */'),nl,

write('/* III. Type halt. to exit prolog session. */'),nl,

write('/* */'),nl,

nl.

?- start-message.

F-87

Activity IDEF0 Syntax Rules

* DATE: 25 Apr. 1990*

* VERSION: 1.0*

* NAME: ACTIVITYSARULE.PRO*

* TITLE: Rule base for an activity box*

* COORDINATOR: Intaek Kim*
* PROJECT: Knowledge base*
* OPERATING SYSTEM: UNIX 4.3*
* LANGUAGE: Quintus Prolog*
* FILE PROCESSING: This module should be used with an inference *

* engine, BC3.*
* CONTENTS: Rules for checking IDEFO syntax of an activity box. *

* HISTORY:*

/****************GOALS*************/

/* These lists of goal present the resulting message. *

goals:: [['Name', 1 ', -.Name], /* Goal for NAME of the box *
['Input', ' ', -.Input], /* Goal for INPUT of box *

['Output', ' -, .Output], /* Goal for OUTPUT of box *
['Control', ' -, .Control],/* Goal for CONTROL of box *
['Mechanism', ' , -.Mechanism], /* Goal for MECHANISM *
['Number', -, .Number]]. 1* Goal for the box NUMBER *

/*****************RULES***************/

/*************About Activity Name***********/
rulel :: if [activityname, is, '']

then ['Name', ' ', ' -- > ERROR: No Activity Name.
Each box must have an activity name'].

rule2 :: if [activityname, is, Activity]
and [Activity, \==, '']

then ['Name', ' ', ' -- > CORRECT: Activity Name is OKI].

/****************About Input*************/
rule3 ::if [activityname, is, Activity]

and [Activity, input-is, null]
then ['Input', 1 ', '--> CORRECT: No Input Arrows, however,

Input is OKI].

rule4 ::if [activityname, is, Activity]

F-88

and [Activity, input-is, "']
then ['Input', ' ', ' --> ERROR: No Input Label

Each Input arrow must have an input label'].

ruleS :: if [activityname, is, Activity]
and [Activity, has-input-number, InputNumber)

and [InputNumber, >, 5]
then ['Input', ' ', ' --> RECOMMEND:

You would better reduce the number of Input arrows
from 0 to 5'].

rule6 :: if [activityname, is, -Activity]
then ['Input', ' ', ' --> CORRECT: Input is OK'].

/******************** About Output ***********************/

/* If there is a box and the output of the box is empty, */
/* then there is no output/name.

rule7 :: if [activityname, is, Activity]
and [Activity, output-is, null]

then ['Output', ' ', ' --> ERROR: You should have at least

one output arrow'].

rule8 :: if [activityname, is, Activity]
and [Activity, output-is, '']

then ['Output', ' ', ' --> ERROR: No Output Label.

Each Output Arrow should have an output Label'].

rule9 :: if [activityname, is, Activity]
and [Activity, hasoutputnumber, OutputNumber]

and [OutputNumber, >, 5]

then ['Output', ' ', ' --> RECOMMEND:

You would better reduce the number of Output arrows
from I to 5'].

rulelO :: if [activityname, is, -Activity]
then ['Output', ' ', ' --> CORRECT: Output is OK'].

/******************* About Control *******************/

rulell :: if [activityname, is, Activity]
and [Activity, controlis, null]

then ['Control', ' ', ' --> ERROR: You should have at least

one control arrow'].

rule12 :: if [activityname, is, Activity]

F-89

and [Activity, controlis, '']

then ['Control', ' ', ' --> ERROR: No Control Label.

Each Control Arrow should have a control Label'].

rule13 :: if [activityname, is, Activity]
and [Activity, has-control-number, ControlNumber]

and [ControlNumber, >, 5]

then ['Control', ' ', ' --> RECOMMEND:

You would better reduce the number of Control arrows
from I to 5'].

rule14 :: if [activityname, is, -Activity]
then ['Control', ' ', ' --> CORRECT: Control is OK'].

/** ********** About Mechanism ******************/

rule15 :: if [activityname, is, Activity]

and [Activity, mechanism-is, '']
then ['Mechanism', ' ', '--> ERROR: No Mechanism Label.

Each Mechanism Arrow should have a mechanism Label'].

rule16 :: if [activityname, is, Activity]
and [Activity, mechanism-is, null]

then ['Mechanism', ' ', '--> CORRECT: No Mechanism Arrows, however,

Mechanism is OK'].

rulel7 :: if [activityname, is, Activity]
and [Activity, hasmechanism.number, MechanismNumber]

and [MechanismNumber, >, 5]

then ['Mechanism', '', '--> RECOMMEND:

You would better reduce the number of Mechanism arrows
within 0 to 5'].

rulel8 :: if [activityname, is, -Activity]
then ['Mechanism', ' ' '--> CORRECT: Mechanism is OK'].

/******************Activity Number***********/

/* If there is a box and the number of the box is 0, that is, */
/* the box has no number, the box must be the top most box. */

rule19 :: if [title, is, Activity]
and [Activity, number-is, Number]
and [Number, -, 0]

then ['Number', ' ' '--> CORRECT: Activity number is OK.

This activity must be the top most level box'].

F-90

rule20 :: if [title, is, Activity]
and [Activity, number-is, Number]
and [Number, \==, 0]

then ['Number', ' ', '--> ERROR: This activity must be

the top most level box.
This activity don''t need a box number'].

/* Each activity box must have a number for the box within */

/* I through 6 except for the top most level activity box. */

/* If there is a box and the number of the box is 0, then */
/* there is no number in the box. */

rule2l :: if [Activity, number-is, Number]
and [title, is, ParentActivity]

and [ParentActivity, \==, Activity]
and [Number, ==, 01

then ['Number', ' ' '--> ERROR: Activity box has no number.

The activity box should have a box number from I to 6.
(If the activity box is the top most level one, then
ignore this message)'].

rule22 :: if [Activity, number-is, -Number]
and [title, is, ParentActivity]
and [ParentActivity, \==, Activity]
and [activity-number, is, in-legalrange]

then ['Number','', '--> CORRECT: Activity box number

is OK.'].

rule23 :: if [Activity, number-is, -Number]
and [title, is, ParentActivity]
and [ParentActivity, \==, Activity]
and [activity-number, is, in-illegal-range]
then ['Number', ', ' -- > ERROR: Activity box number is

not proper.
The recommended range of number is I to 6'].

/* These rules are the second level rules. */
rule24 :: if LActivity, number.is, Number]

and [Number, >, 0)
and [Number, <, 71

then [activity-number, is, in-legal-range].

rule25 :: if LActivity, number.is, Number]
and [Number, <, 01

F-91

then [activity-number, is, in.illegal-range].

rule26 if LActivity, number-is, Number]
and [Number, >, 6]

then [activity-number, is, in-illegarange].

F-92

Boundary IDEFo Syntax Rules

* DATE: 25 Apr. 1990 *

* VERSION: 1.0 *

* FILE NAME: BOUNDARYSARULE.PRO *

* TITLE: Rule base for boundary arrows *

* COORDINATOR: Intaek Kim *

* PROJECT: Knowledge base *

* OPERATING SYSTEM: UNIX 4.3 *

* LANGUAGE: Quintus Prolog *

* FILE PROCESSING: This module should be used an inference engine *

* BC3. *

* CONTENTS: Rules for checking IDEFO syntax of boundary arrows. *

* HISTORY: *

/********************* GOALS **************************/
/* These lists of goal present the resulting message. */

goals:: [['Boundary Input', ' ', -Input],
/* Goal for boundary input in any IDEFO diagram */

['Boundary Output', ' ', -Output],

/* Goal for boundary output in any IDEFO diagram */
['Boundary Control', ' ', -Control],

/* Goal for boundary control in any IDEFO diagram */
['Boundary Mechanism', 1 ', _Mechanism]

/* Goal for boundary mechanism in any IDEFO diagram */

*********************** RULES **********************/
/**** When there is no information of parent box ***/

rulel :: if [child-title, is, ParentBox]
and not [activityname, is, ParentBox]

then [boundarysarule, is, stalled].

rule2 :: if [boundarysarule, is, stalled]
then ['Boundary Input', ' ',

-- > !!! THIS IS A FATAL ERROR !!!'1.

rule3 :: if [boundarysarule, is, stalled]
then ['Boundary Output', ' ',)

-- > There is nothing about Parent activity'].

rule4 :: if [boundarysarule, is, stalled]

F-93

then ['Boundary Control', ' ',

-- > Maybe you have tried to check syntax with

a file without PARENT ACTIVITY BOX information'].

ruleS :: if [boundarysarule, is, stalled]
then ['Boundary Mechanism', ,

-- > PLEASE START AGAIN !!!'].

/******s*********** About Boundary Input ******************/

/* No label on boundary input arrow */
rule6 :: if [boundary-input, is, '']

then ['Boundary Input', '

-- > ERROR: No boundary input label'].

/* No label on input arrow of the parent box */
rule7 :: if [childtitle, is, ParentBox]

and [ParentBox, input_is, '']

then ['Boundary Input',' ','

-- > ERROR: Parent Input has no label'].

/* The number of Input arrow(s) of the Parent Activity */
/* box is differ from that of the Boundary Input arrow(s).*/
/* The number of the Parent Input arrow(s) > The number */
/* of the Boundary Input arrow(s). */
rule8 :: if [child.title, is, ParentBox]

and [ParentBox, has-inputnumber, InputNumber]
and [boundary-input, has-number, BoundInNumber]

and [InputNumber, >, BoundInNumber]
then ['Boundary Input',' ','

-- > ERROR: The number of Input arrow(s) of

Parent Activity box is greater than that of

Boundary Input arrow(s) -- Must have the same number'].

/* The number of Input arrow(s) of the Parent Activity box is */
/* differ from that of the Boundary Input arrow(s).
/* The number of the Parent Input arrow(s) < The number of the */
/* Boundary Input arrow(s). */
rule9 :: if [child_title, is, ParentBox]

and [ParentBox, hasinput.number, InputNumber]
and [boundary-input, has-number, BoundInNumber]
and [InputNumber, <, BoundInNumber]

then ['Boundary Input',' ','

-- > ERROR: The number of Input arrow(s) of
Parent Activity box is less than that of

Boundary Input arrow(s) -- Must have the same number'].

F-94

/* If the number of arrows is greater than i"ve, recomend */
/* about how many the number of arrows exists.
rulelO :: if [boundary-input, has-number, BoundInNumber]

and [child-title, is, ParentBox]
and [ParentBox, hasinputnumber, BoundInNumber]
and [BoundInNumber, >, 5]

then ['Boundary Input', ' ', ' --> RECOMMEND:

You would better reduce the number of arrows to six
below'].

/* No boundary Input arrow and No Input at Parent Box
rulell :: if [childtitle, is, ParentBox]

and [boundary-input, is, null]
and [ParentBox, input-is, null]

then ['Boundary Input', ' ')

-- > CORRECT: Boundary Input is OK'].

/* Consider the correct case acording to the Number of */
/* Input arrow(s).
rule12 :: if [boundary-input, has-number, BoundInNumber]

and [child-title, is, ParentBox]
and [ParentBox, has.inputnumber, BoundInNumber]

then [case-of.boundaryin, is, BoundInNumber].

/* Case 1: The number of Boundary Input arrow is 1. */
rule13 :: if [case.ofboundary-in, is, 1]

and [childtitle, is, ParentBox]
and [ParentBox, input-is, ParentInput]
and [boundary-inputl, is, ParentInput]

then ['Boundary Input', ' I

-- > CORRECT: Boundary Input is OK'].

/* Case 2: The number of Boundary Input arrows is 2. */
rule14 :: if [case-of.boundaryin, is, 2]

and [boundary.inputi, is, ParentInputl]
and [boundary-input2, is, ParentInput2]
and [child-title, is, ParentBox]
and [ParentBox, input-is, ParentInputl]
and [ParentBox, input.is, ParentInput2]

then ['Boundary Input', ' ',

-- > CORRECT: Boundary Input is OK'].

/* Case 3: The number of Boundary Input arrows is 3. */
rule15 :: if [case.of.boundaryin, is, 3]

F-95

and [boundary-inputl, is, ParentInputi]
and [boundary-input2, is, ParentInput2
and [boundary-input3, is, Parentlnput3]
and [child.title, is, ParentBox]
and [ParentBox, input-is, ParentInputi]
and [ParentBox, input.is, ParentInput2]
and [ParentBox, input.is, ParentInput3]

then ['Boundary Input', '),)
-- > CORRECT: Boundary Input is OK'].

/* Case 4: The number of Boundary Input arrows is 4. */
rulel6 :: if [case-of-boundary-in, is, 4]

and [boundary-inputl, is, ParentInputl]
and [boundary-input2, is, Parentlnput2]
and [boundary-input3, is, ParentInput3]
and [boundary-input4, is, Parentlnput4]
and [child.title, is, ParentBox]
and [ParentBox, input-is, ParentInputl]
and [ParentBox, inputis, ParentInput2]
and [ParentBox, input.is, ParentInput3]
and [ParentBox, inputis, Parentlnput4]

then ['Boundary Input', ' 1,;

-- > CORRECT: Boundary Input is OK'].

/* Case 5: The number of Boundary Input arrows is S. */
rulel7 :: if [caseof.boundary-in, is, 5]

and [boundary-inputl, is, ParentInputl]
and [boundary.input2, is, ParentInput2]
and [boundary.input3, is, ParentInput3]
and [boundary.input4, is, Parentlnput4]
and [boundary-inputS, is, ParentInputS]
and [childtitle, is, ParentBox]
and [ParentBox, inputis, ParentInputl]
and [PaientBox, input-is, Parentlnput2]
and [ParentBox, input-is, ParentInput3]
and [ParentBox, input.is, ParentInput4]
and [ParentBox, inputjis, ParentInputS]

then ['Boundary Input', ' ',' -- > CORRECT: Boundary Input
is OK'].

/* Boundary Input is not matched */
/* This rule includes all No-match case though both of */
/* parent and child have the same number of input */
/* arrow(s).
rulel8 :: if [child-title, is, ParentBox]

F-96

m, am m mmmmnmm mmmmm m m]

and [activityname, is, ParentBox]
then ['Boundary Input',' ','--> ERROR: Boundary Input is not

matched. -- You may have at least one unmatched label'].

/******************** About Boundary Output *************************

rule19 :: if [boundary-output, is, "]
then ['Boundary Output', ' ',' -- > ERROR: No boundary output

label'].

rule20 :: if [child-title, is, ParentBoxJ
and [ParentBox, output-is, ''

then ['Boundary Output',' ',' -- > ERROR: Parent Output has no

label'].

rule2l if [boundary-output, is, null]
then ['Boundary Output',' '2 -- > ERROR: No boundary output

arrow.
Should have at least one boundary output arrow'].

rule22 :: if [child-title, is, ParentBox]
and [ParentBox, output-is, null]

then ['Boundary Output', '

-- > ERROR: No parent output arrow.

Should have at least one parent output arrow'].

/* The number of Output arrow(s) of the Parent Activity */
/* box is differ from that of the Boundary Output arrow(s).*/
/* The number of the Parent Output arrow(s) > The number */
/* of the Boundary Output arrow(s).
rule23 :: if [child-title, is, ParentBox]

and [ParentBox, has-output.number, OutputNumber]
and [boundary-output, has-number, BoundOutNumber]
and [OutputNumber, >, BoundOutNumber]

then ['Boundary Output',' ',' --> ERROR: The number of Output
arrow(s) of Parent Activity box is greater than that of
Boundary Output arrow(s) -- Must have the same number'].

/* The number of Output arrow(s) of the Parent Activity box is */
/* differ from that of the Boundary Output arrow(s). */
/* The number of the Parent Output arrow(s) < The number of the */
/* Boundary Output arrow(s).
rule24 :: if [child-title, is, ParentBox]

and [ParentBox, has-output.number, OutputNumber]
and [boundary.output, has-number, BoundOutNumber]
and OutputNumber, <, BoundOutNumber]

F-97

then ['Boundary Output',' ',' -- > ERROR: The number of Output

arrow(s) of Parent Activity box is less than that of
Boundary Output arrow(s) -- Must have the same number'].

/* If the number of arrows is greater than five, recomend */
/* about how many the number of arrows exists.
rule25 :: if [boundary-output, has-number, BoundOutNumber]

and [childtitle, is, ParentBox]
and [ParentBox, has.outputnumber, BoundOutNumber)
and [BoundOutNumber, >, 5]

then ['Boundary Output', ' ', ' --> RECOMMEND:

You would better reduce the number of arrows to six
below'].

/* Consider the correct case acording to the Number of */
/* Output arrow(s). */
rule26 :: if [boundary-output, has-number, BoundOutNumber]

and [childtitle, is, ParentBox]
and [ParentBox, has.outputnumber, BoundOutNumber]

then [case-of.boundaryout, is, BoundOutNumber].

/* Case 1: The number of Boundary Output arrow is 1. */
rule27 :: if [caseof.boundaryout, is, 1]

and [boundary-outputl, is, ParentOutput]
and (child-title, is, ParentBox]

and [ParentBox, output-is, ParentOutput]
then ['Boundary Output', ' ',' --> CORRECT:

Boundary Output is OK'].

/* Case 2: The number of Boundary Output arrows is 2. */
rule28 :: if [case-of.boundaryout, is, 2]

and [boundaryoutputl, is, ParentOutputl]
and [boundary-output2, is, ParentOutput2]
and [childtitle, is, ParentBox]
and [ParentBox, output-is, ParentOutputl]
and [ParentBox, output-is, ParentOutput2]

then ['Boundary Output', ' ',' --> CORRECT:

Boundary Output is OK'].

/* Case 3: The number of Boundary Output arrows is 3. */
rule29 :: if [caseof-boundary.out, is, 3]

and [boundary-outputl, is, ParentOutputl]
and [boundary-output2, is, ParentOutput2]
and [boundary.output3, is, ParentOutput3]
and [child-title, is, ParentBox]

F-98

and [ParentBox, output-is, ParentOutputl]
and [ParentBox, output-is, ParentOutput2]

and [ParentBox, output-is, ParentOutput3]
then ['Boundary Output', ' 'I, -- > CORRECT:

Boundary Output is OK'].

/* Case 4: The number of Boundary Output arrows is 4. */
rule30 :: if [caseof-boundary.out, is, 4]

and [boundary.outputl, is, ParentOutputl]
and [boundary-output2, is, ParentOutput2]
and [boundary-output3, is, ParentOutput3]
and [boundary.output4, is, ParentOutput4)
and [childtitle, is, ParentBox]
and [ParentBox, output_is, ParentOutputl]
and [ParentBo:, output-is, ParentOutput2]
and [ParentBox, output-is, ParentOutput3)
and [ParentBox, output-is, ParentOutput4]

then ['Boundary Output', ' ',' --> CORRECT:

Boundary Output is OK'].

/* Case 5: The number of Boundary Output arrows is 5. */
rule3l :: if [caseofboundary.out, is, 5)

and [boundary-outputl, is, ParentOutputl]
and [boundary-output2, is, ParentOutput2]
and [boundary-output3, is, ParentOutput3]

and [boundaryoutput4, is, ParentOutput4]
and [boundary-outputS, is, ParentOutputS)
and [child-title, is, ParentBox]
and [ParentBox, outputis, ParentOutputil
and [ParentBox, outputis, ParentOutput2]

and [ParentBox, output-is, ParentOutput3]
and [ParentBox, outputis, ParentOutput4]
and [Parenz3ox, output-is, ParentOutput5]

then ['Boundary Output', ')'# -- > CORRECT:
Boundary Output is OK'].

/* Boundary Output is not matched */
/* This rule includes all No-match case though both of */
/* parent and child have the same number of output */
/* arrow(s). */
rule32 :: if [child.title, is, ParentBox]

and [activityname, is, ParentBox]
then ['Boundary Output',' ','--> ERROR: Boundary Output is not

matched. -- You may have at least one unmatched label'].

F-99

/**************** About Boundary Control ******************/

rule33 :: if [boundarycontrol, is, "'
then ['Boundary Control', ')

--> ERROR: No boundary control label'].

rule34 :: if [child-title, is, ParentBox]
and [ParentBox, controlis, '']

then ['Boundary Control',' ','

--> ERROR: Parent Control has no label'].

rule35 :: if [boundary-control, is, null]
then ['Boundary Control',' ','

-- > ERROR: No boundary control arrow.
Should have at least one boundary control arrow'].

rule36 :: if [child-title, is, ParentBox]
and [ParentBox, control_is, null]

then ['Boundary Control', '

-- > ERROR: No parent control arrow.

Should have at least one parent control arrow'].

/* If the number of arrows is greater than five, recomend */
/* about how many the number of arrows exists.

rule37 :: if [boundary-control, hasnumber, BoundConNumber]
and [child-title, is, ParentBox]
and [ParentBox, has-control-number, BoundConNumber]
and [BoundConNumber, >, 5]

then ['Boundary Control', ' ', ' --> RECOMMEND:

You would better reduce the number of arrows to six
below').

/* Consider the correct case acording to the Number of */

/* Control arrow(s). */
rule38 :: if [boundarycontrol, hasnumber, BoundConNumber]

and [child-title, is, ParentBox]

and [ParentBox, has-control-number, BoundConNumber]

then [caseof.boundary-con, is, BoundConNumber].

/* Case 1: The number of Boundary Control arrow is 1. */
rule39 :: if [case.of-boundary.con, is, 11

and [boundary.controll, is, ParentControl]

and [child-title, is, ParentBox]
and [ParentBox, controlis, ParentControl]

then ['Boundary Control', ' ',' --> CORRECT: Boundary

Control is OK'].

F-100

/* Case 2: The number of Boundary Control arrows is 2. */
rule40 :: if [caseof.boundarycon, is, 2)

and [boundarycontroll, is, ParentControll]
and [boundarycontrol2, is, ParentControl2
and [child-title, is, ParentBox]
and [ParentBox, control-is, ParentControll]
and [ParentBox, control-is, ParentControl2)

then [PBoundary Control', ' ',' -- > CORRECT: Boundary
Control is OK'].

/* Case 3: The number of Boundary Control arrows is 3. */
rule4l :: if [case-of.boundarycon, is, 3]

and [boundarycontroll, is, ParentControll]
and [boundarycontrol2, is, ParentControl2
and [boundary-control3, is, ParentControl3j
and [childtitle, is, ParentBox]
and [ParentBox, control-is, ParentControli]
and [ParentBox, control-is, ParentControl2)
and [ParentBox, control-is, ParentControl3]

then ['Boundary Control', ' ',' --> CORRECT: Boundary

Control is OK'].

/* Case 4: The number of Boundary Control arrows is 4. */
rule42 :: if [case-of-boundary-con, is, 4]

and [boundarycontroll, is, ParentControll]
and [boundarycontrol2, is, ParentControl2
and [boundary-control3, is, ParentControi3]
and [boundary-control4, is, ParentControl4
and [child-title, is, ParentBox]
and [ParentBox, control-is, ParentControll]
and [ParentBox, control-is, ParentControl2)
and [ParentBox, control-is, ParentControl3J
and [ParentBox, control-is, ParentControl4)

then ['Boundary Control', ' ',' -- > CORRECT: Boundary
Control is OK'].

/* Case 5: The number of Boundary Control arrows is 5. */
rule43 :: if [case-of.boundarycon, is, 5)

and [boundaryontroll, is, ParentControll]
and [boundary-control2, is, ParentControl2]
and [boundary-control3, is, ParentControl3)
and [boundary.control4, is, ParentControl4]
and [boundary-controlS, is, ParentControlS]
and [child-title, is, ParentBox]

F-101

and [Parentmox, control-is, ParentContril)
and [ParentBox, control-is, ParentControl2l
and [ParentBox, control-is, ParentControl3]

and [ParentBox, controlis, ParentControl4j
and [ParentBox, controlis, ParentControl5

then ['Boundary Control', ' ',' -- > CORRECT: Boundary

Control is OK'].

/* Boundary Control is not matched */
/* This rule includes all No-match case though both of */
/* parent and child have the same number of control */
/* arrow(s).
rule44 :: if [child.title, is, ParentBox]

and [activityname, is, ParentBox]
then ['Boundary Control',' ','-> ERROR: Boundary Control is not
matched. -- You may have at least one unmatched label'].

/**************** About Boundary Mechanism **************/

rule45 :: if [boundary-mechanism, is, '1
then ['Boundary Mechanism', ' III
--> ERROR: No boundary mechanism label'].

rule46 :: if [child-title, is, ParentBox]
and [ParentBox, mechanism-is, '')

then ['Boundary Mechanism',' ','

--> ERROR: Parent Mechanism has no label'].

/* The number of Mechanism arrow(s) of the Parent Activity */
/* box is differ from that of the Boundary Mechanism arrow(s).*/
1* The number of the Parent Mechanism arrow(s) > The number */
/* of the Boundary Mechanism arrow(s).
rule47 :: if [child-title, is, ParentBox]

and [ParentBox, has-mechanism-number, MecNumber]
and [boundarymechanism, has-number, BoundMecNumber]
and [MecNumber, >, BoundMecNumber]

then ['Boundary Mechanism',' ','--> ERROR: The number of

Mechanism arrow(s) of Parent Activity box is greater than that

of Boundary Mechanism arrow(s) -- Must have the same

number'].

/* The number of Mechanism arrow(s) of the Parent Activity box is */
/* differ from that of the Boundary Mechanism arrow(s).
/* The number of the Parent Mechanism arrow(s) < The number of the */
/* Boundary Mechanism arrow(s). */
rule48 :: if [child-title, is, ParentBox]

F-102

and [ParentBox, has-mechanism-number, MecNumber)
and [boundary-mechanism, has-number, BoundMecNumber]
and [MecNumber, <, BoundMecNumber]

then ['Boundary Mechanism',' ','--> ERROR: The number of

Mechanism arrow(s) of Parent Activity box is less than
that of Boundary Mechanism arrow(s) -- Must have the same
number'].

/* If the number of arrows is greater than five, recomend */
/* about how many the number of arrows exists.
rule49 :: if [boundary-mechanism, has-number, BoundMecNumber]

and [childtitle, is, ParentBox]
and [ParentBox, has-mechanism.number, BoundMecNumberJ
and [BoundMecNumber, >, 5)

then ['Boundary Mechanism', ' ', '--> RECOMMEND:
You would better reduce the number of arrows to six
below'].

/* No boundary Mechanism arrow and No Mechanism at Parent Box */
ruleSO :: if [child-title, is, ParentBox]

and [boundary-mechanism, is, null]
and [ParentBox, mechanism-is, null]

then ['Boundary Mechanism', ' ','--> CORRECT: Boundary

Mechanism is OK'].

/* Consider the correct case acording to the Number of */
/* Mechanism arrow(s). *[
rule51 :: if [boundary-mechanism, has-number, BoundMecNumber]

and [child-title, is, ParentBox]
and [ParentBox, has-mechanism.number, BoundMecNumber]

then [case-ofboundarymech, is, BoundMecNumber].

/* Case 1: The number of Boundary Mechanism arrow is 1. */
ruleS2 :: if [case-of.boundarymech, is, 1)

and [child-title, is, ParentBox]
and [ParentBox, mechanism-is, ParentMech)
and [boundary-mechanisml, is, ParentMech]

then ['Boundary Mechanism', ' ','--> CORRECT: Boundary

Mechanism is OK'].

/* Case 2: The number of Boundary Mechanism arrows is 2. */
rule53 :: if [caseof-boundary.mech, is, 2)

and [boundary-mechanismi, is, ParentMechil
and [boundary-mechanism2, is, ParentMech2)
and [child-title, is, ParentBox]

F-103

and CParentBox, mechanism-.is, Parent~echi]
and [Parent~ox, mechanism-.is,* PareritMech2]

then ['Boundary Mechanism', II,'-- CORRECT: Boundary
Mechanism is OKI].

/* Case 3: The number of Boundary Mechanism arrows is 3. *
ruleS4 :: if [case.of..boundary-.mech, is, 3]

and [boundary-.mechanisml, is, Parent~echl]
and [boundary.mechanism2, is, ParentMech2]
and [boundary..mechanism3, is, ParentMech3]
and [child-title, is, ParentBox]
and [Parent~ox, mechanism-.,is, ParentMechi)
and [ParentBox, mechanism-.is, ParentMech2)
and [ParentBox, mechanism-.is, ParentMech3)

then ['Boundary Mechanism', I 1,'--> CORRECT: Boundary
Mechanism is OK').

/* Case 4: The number of Boundary Mechanism arrows is 4. *
ruleSS :: if Ecase.of-.boundary-.mech, is, 4]

and Eboundary..mechanismi, is, ParentMechi]
and [boundary..mechanism2, is, ParentMech2]
and [boundary..mechanism3, is, ParentMech3)
and [boundary..mechanism4, is, ParentMech4]
and [child.title, is, Parent~ox]
and [ParentBox, mechanism-is, ParentMechi)
and EParentBox, mechanism-.is, ParentMech2]
and [ParentBox, mechanism-.is, ParentMech3]
and [ParentBox, mechanism-is, ParentMech4]

then ['Boundary Mechanism', I ' , -- > CORRECT: Boundary
Mechanism is OKI].

/* Case 5: The number of Boundary Mechanism arrows is 5. *
ruleS6 ::if [case..of.boundary..mech, is, 5)

and [boundary..mechanisml, is, ParentMechi)
and [boundary.mechanism2, is, ParentMech2]
and [boundary..mechanism3, is, ParentMech3)
and [boundary..mechanism4, is, ParentMech4]
and [boundary..mechanismS, is, ParentMech5]
and (child~title, is, ParentBox]
and [ParentBox, mechanism..is, ParentMechi]
and [ParentBox, mechanism.is, ParentMech2)
and [ParentBox, mechanism-.is, ParentMech3)
and (Parent~ox, mechanism.is, ParentMech4)
and [ParentBox, mechanism..is, ParentMech5]

then ['Boundary Mechanism', I 1,'--> CORRECT: Boundary

F- 104

Mechanism is OK'].

/* Boundary Mechanism is not matched */
/* This rule includes all No-match case though both of */
/* parent and child have the same number of mechanism */
/* arrow(s).
ruleS7 :: if [child-title, is, ParentBox]

and [activityname, is, ParentBox]
then ['Boundary Mechanism',' ','

-- > ERROR: Boundary Mechanism is not
matched. -- You may have at least one unmatched label'].

F-105

Bibliography

1. Blackburn, Mark R. "Using Expert Systems to Construct Formal Specifica-
tions," IEEE Expert. AI/Software Engineering, Spring, 1989.

2. Blackman, Michael J. "CASE for Expert Systems," A! Expert, Vol.5, No.2:27-
31, Feburary 1990.

3. Booch, Grady. Software Engineering with Ada. Benjamin and Cummings Pub-
lishing Company, Menlo Park CA, 1987.

4. Bratko, Ivan. Prolog Programming for Artificial Intelligence. England: Addison-
Wesley Publishing Company, 1987.

5. Brown, Donald E. "Inference Engines for the Mainstream," AI Expert, Vol.5,
No.2:32-37, Feburary 1990.

6. Brown, Frank M. A Shell for Backward-Chaining Expert Systems. Handout,
Department of Electrical and Computer Engineering, Air Force Institute of
Technology(AU), Wright-Patterson, OH, 1989.

7. Charniak, Eugene. and McDermott, Drew V. Introduction to Artificial Intelli-
gence. Addison-Wesley Publishing Company, 1987.

8. Hartrum, Thomas C. System Development Documentation Guidelines and Stan-
dards (Draft # 4). Department of Electrical and Computer Engineering, Air
Force Institute of Technology(AU), Wright-Patterson AFB, OH, January 1989.

9. Johnson, Steven E. A Graphics Editor for Structured Analysis with a Data Dic-
tionary. MS thesis, AFIT/GE/ENG/87D-28, School of Engineering, Air Force
Institute of Technology(AU), Wright-Patterson AFB, OH, December 1987.

10. Jung, Donghak Design of a Syntax Validation Tool for Requirements Anal-
ysis Using Structured Analysis and Design Technique(SADT). MS thesis,
AFIT/GCS/ENG/88S-1, School of Engineering, Air Force Institute of Tech-
nology(AU), Wright-Patterson AFB, OH, September 1988.

11. Luger, George F. and Stubblefield, William A. Artificial Intelligence and the
Design of Expert Systems. Benjamin and Cummings Publishing Company, Red-
wood City, CA, 1989.

12. Pressman, Roger S. Software Engineering: A Practioner's Approach. Second
edition, New York, McGraw-Hill Book Company, 1989.

13. Giarratano, Joseph C. and Riley, Gary. Expert Systems: Principles and Pro-
gramming. PWS-KENT Publishing Company, Boston, 1989.

14. Ross, Douglas T. "Structured Analysis(SA): A language for Communicating
Ideas," IEEE Transactions on Software Engineering, SE-3, No.1:16-34, January
1977.

BIB-1

15. Ross, Douglas T. and K. E. Schoman "Structured Analysis for Requirements
Definition," IEEE Transactions on Software Engineering, SE-3, No.1:6-15, Jan-
uary 1977.

16. Rowe Neil C. Artificial Intelligence Through Prolog. Prentice Hall, Englewood
Cliffs, New Jersey, 1988.

17. SofTech, Inc. Guide to Understanding Activity Diagrams IDEFo. Waltham, MA,
September 1979(7500- 12).

18. Sommerville, Ian. Software Engineering. third edition Addison-Wesley Publish-
ing Company, 1989.

19. Sun Micorsystems, Inc. Pixrect Reference Manual. Mountain View, CA, May
1988(800-1785-10).

20. Sun Microsystems, Inc. SunView Programmer's Guide. Mountain View, CA.,
September 1986(800-1345-10).

21. Yau, Stephen S. and Tsai, Jeffery J. "Knowledge Representation of Software
Component Interconnection Information for Large-Scale Software Modifica-
tions," IEEE Transactions on Software Engineering,SE-13, No.3:355-361, March
1987.

22. Hartrum, Thomas C. Readings II- Requirements Analysis. Department of Elec-
trical and Computer Engineering, Class notes, Draft # 2, Air Force Institute of
Technology(AU), Wright-Patterson AFB, OH, January 1988.

23. Johnson, W. Lewis and Yue, Kaizhi "An Integrated Specfication Development
Framework," Information Sciences Institute, University of Southern California,
CA, October, 1988.

24. Moore Michael J. and Sheffield James Rodney "A PDL Synthesizer for Real-
Time Systems," SofTech, Inc., Dayton, OH, 1989.

25. Cureton, Bill "Program Synthesis: A Paradigm for Knowledge-Based Software
Engineering," Sun Technology, 21-25, Winter, 1989.

BIB-2

Vita

Intaek Kim

the son of BongYou and PungOk Kim. He graduated from the Ohyoun high school

in 1978 and enterd the Korea Air Force Academy from which he received the major

degree of a Bachelor of Engineering in Electrical Engineering in March 1983. He

became a service man on active duty in March 1983, attended Seoul National Uni-

versity and received a Bachelor of Science Degree with major in Computer Science

and Statistics in Feburary 1986. After graduation, He was assigned to R.O.K. Air

Force Academy where served as Instructor in the Department of Computer Science

and Statistics on CheungJu, Korea until March 1988. He entered the school of Engi-

neering, Air Force Institute of Technology, Wright- Patterson Air Force Base, Ohio,

in May 1988.

VITA-I

SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassi fiP d
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/90J-02

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

School of Engineering (if applicable)

6c. ADDRESS (City, State, and ZIPCod) 7b. ADDRESS(City, State, and ZIP Code)
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433-6583

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

OSD/SDIO S/BM

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Pentagon PROGRAM PROJECT TASK WORK UNIT

Washington, DC 20301-7100 ELEMENTNO. NO. NI

11. TITLE (Include Security Classification) EXPERT SYSTEM IN SOFTWARE ENGINEERING USING

STRUCTURED ANALYSIS AND DESIGN TECHNIQUE (SADT)

12. PERSONAL AUTHOR(S)
intaek Kim, Captain Republic of Korea Air Force

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Thesis FROM TO 1990, June Q : /

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Software Engineering, Knowledge-Based System,

2 05 CASE tool,Predicate representation

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This thesis investigation presents the development of an application
of expert system for checking the syntax of Structured Analysis and
Design Technique (SADT) method. The tool provides the requirements
analyst and the designer with a means of checking the syntax of IDEFO
diagram. The tool was implemented using expert system thechnique.

The syntax checking process allows the extension of the rule base
for the syntax knowledge representation of SADT methodology.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0-UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS Unclassified

22a NAMEOF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Dr. Gary B. Lamont 513-256-1279 AFIT/ENG

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

